Orbi지형T_[점수를높이는5M.Column] Ch2.등비수열,수열의합'지형도를그리다'
게시글 주소: https://orbi.kr/00071447980
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
Orbi_Column_김지형T_수1(수열의합)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH2 Geometric sequence
CH3 Sum of a sequence
오늘 소개해드릴 챕터는 등비수열과 수열의 합 파트입니다. 첨부파일에는 등차수열/등비수열과 수열의 합 개념 부분만 올려두었어요. 이 자료는 현강에서 설명한 내용을 정리한 것으로, 필요하신 경우 다운로드하여 읽어보시면 큰 도움이 될 거라 생각합니다.
등비수열과 수열의 합은 등차수열 파트와 달리, 기출문항 중 중요한 문제는 많지 않아서 개념 위주로 정리하였습니다.
그럼 시작해볼게요!
Chapter 2: 수1 등비수열
(Geometric sequence)
등비수열은 무엇보다 공비를 직관적으로 파악하는 능력이 가장 중요합니다. 등비수열의 핵심은 각 항이 일정한 비율(공비)로 이전 항과 연결되어 있다는 점인데요. 공비를 빠르게 이해하고 활용할 수 있다면 문제를 푸는 속도가 훨씬 빨라질 뿐만 아니라, 다양한 응용 문제에서도 효과적으로 접근할 수 있습니다.
이와 같이 다양한 등비수열의 공비를 빠르게 파악하는 능력은 문제를 해결하는 데 있어 매우 중요한 역할을 합니다. 공비는 등비수열의 구조를 이해하는 열쇠이자, 다음 단계로 나아가는 출발점이 되기 때문인데요. 공비를 빠르게 파악하면 수열의 일반항을 구하거나, 합공식을 적용하는 데 훨씬 수월해집니다.
특히, 미적분에서 자주 등장하는 등비급수를 계산할 때도 공비를 정확히 이해하고 활용하는 것이 핵심입니다. 예를 들어, 등비급수의 합을 구할 때 사용하는 공식은 모두 공비의 성질에서 출발합니다.
공비의 크기(절대값)가 1보다 작을 때, 등비급수의 합은 극한값으로 수렴하게 되는데, 이는 무한급수 문제를 푸는 데 매우 중요한 개념입니다. 이때 공비를 빠르게 파악하고 공식에 대입하는 과정이 자연스러워진다면, 복잡한 계산도 한결 쉽게 해결할 수 있죠.
이번에는 등비수열의 합 증명 과정에 대해 살펴보겠습니다. 등비수열의 합 공식을 정확히 이해하고 유도 과정을 기억하는 것은 문제 풀이뿐만 아니라 수학적 사고력을 키우는 데도 큰 도움이 됩니다. 특히 공식을 단순히 암기하는 것에 그치지 않고, 유도 과정을 이해하면 다양한 문제 상황에서도 유연하게 응용할 수 있게 됩니다.
Chapter 3: 수1 수열의 합
(Sum of a sequence)
**(5)**번 문제는 모의고사 기출문제를 풀 때 종종 등장하는 형태로, 한 번 익혀두면 매우 유용하게 활용할 수 있는 유형입니다. 특히, 이 문제는 **(1)**번과 **(2)**번의 결과를 더해 정리한 것이기 때문에 구조적으로 간단하고 이해하기 쉬운 편입니다.
등차수열과 등비수열의 합 공식은 다양한 문제를 빠르고 정확하게 해결하기 위해 꼭 알아야 하는 핵심 도구입니다. 이 공식들을 제대로 활용하면, 복잡해 보이는 문제도 단순한 계산으로 빠르게 정리할 수 있어요.
오늘 다룬 내용은 비교적 어렵지 않지만, 개념을 몰랐던 학생들에게는 매우 유익한 정보가 될 거예요. 무엇보다 중요한 건, 공식을 단순히 외우는 것보다 그 원리를 이해하는 것입니다. 개념을 제대로 이해하면 다양한 문제에서 응용할 수 있어 학습 효과가 훨씬 커질 거예요.
다음 Column에서는 수학적 귀납법에 대해 다룰 예정입니다. 특히, 작년 6월/9월 모의평가와 수능 22번에서 출제된 문항들을 깔끔히 분석하며, 최근 귀납법 문제가 어떤 흐름으로 출제되고 있는지 한눈에 정리해드릴게요. 이를 통해 귀납법 문제에 대한 이해를 쉽게 높이고, 실전에서 바로 적용할 수 있도록 도와드리겠습니다.
혹시 오늘 다룬 내용을 더 자세히 배우고 싶다면, Orbi 인강에서 확인해보세요. 제가 직접 준비한 강의에서는 개념부터 문제풀이까지 하나하나 차근차근 설명해드리니, 혼자 공부하며 놓쳤던 부분도 확실히 채울 수 있을 거예요. 수학이 점점 자신있어지는 경험을 할 수 있도록 함께 만들어가는 강의가 되겠습니다.
오늘 하루도 화이팅하시고, 더 나은 내일을 위해 계속 나아가 봅시다!
Orbi 강의에서 여러분을 기다릴게요!
유익했다면 좋아요! 팔로우! 부탁드립니다!!!
그리고 수학 질문 마구마구 댓글 달아주시거나 쪽지주시면하나하나 상세하게 답장해드리겠습니다아아아
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
책 읽을 때 바로 전에 읽은 내용이 기억이 안남 남의 말이 머리로 안 들어옴 그래서...
-
아님 햇반도 있겠다 라면?
-
95 ㄷㄷㄷㄷ
-
대성패스 공유 0
대성패스 20에 공유 받으실 분 구합니다 쪽지주세요!
-
소나(素那)[또는 금천(金川)이라 아니 뭔 수특, 수완, 검정 교과서 싹 다...
-
죄송합니다.. 12
죄송합니다.. 제가 할말이 없습니다
-
음료 빼고 든든한 것 중에
-
3달만에 러닝크루 다녀오겠습니다 =)
-
어아아아아아아아아아아아아 왜 제로 치킨 없는거냐고...
-
당했을때 빡치는것 / 본인이 많이 하는것 + 그 이유 얘도 주기적으로 올리는데...
-
오르비 캐스트의 힘은 굉장했다!
-
본인이 주변에서 본 인팁들 어땠는지 사회성이 없다느니 싸가지가 없다느니 맹하다니...
-
[속보] 합참 "북한군 10여명 휴전선 침범, 경고방송·사격에 북상" 1
북한군 10여명이 8일 군사분계선(MDL)을 침범했다가 북상했다고 합동참모본부가...
-
시범 보여줄 여르비 구함...
-
ㅈ됐다 3
학교에 패드 펜 놓고 옴. 근데 이동수업이었음. 정확히 언제 없어졌는 지 모름
-
좆같아~ 오늘 뭐할까~(공부)
-
오늘은꼭공부를하겠단내계획이
-
2025학년도 홍익대 논술 기출(선행학습평가) : 네이버 블로그
-
룸메랑 너무 잘맞아서 서로 공부한다고 해놓고 수다만 ㅈㄴ 떪 그리고 오며가며 보면...
-
국어 나기출 언매 2단원 국정원 비문학 2지문 분석 문학론 강의 1 고전시가 단어...
-
지구 심화커리 0
유자분 솔텍 시즌1 둘중 뭐가 더 쉽나요?
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 1
논리싫증주의자는 관심이 많다!
-
얘네 이럴거면 개정 왜했냐
-
내 생각 요하는 활동할 때마다 떠오르는 것고 없고 논설문도 못 쓰겠고 챗지피티만...
-
요약 칼럼이라도 찍어볼까 나중에
-
맞팔구 0
-
Keegan-Michael Key
-
근육통이 생김
-
연세대가 노최저라서 할까하다가 연세대 논술 공부(수리+최저도 공부해야하니)의...
-
달마 오열하겠노 0
단박에 깨달음 ㅇㄷ
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 3
논리싫증주의자는 관심이 없다
-
못생긴듯 0
-
이번만큼은 사랑한다 섹스 ㅋㅋㅋㅋ
-
왜 맞팔했는데 0
1명이 줄어든거지??ㅡㅡ
-
공주 가오떨어져
-
그냥 싫음 화학 자체가 역겨움
-
안녕하세요 0
네
-
독감인가 1
토요일부터 계속 이러네 열이 내렸다가도 다시 남
-
타과생들 어떻게 생각하시나요
-
아 여기가 아닌가?ㅎ
-
참고로 본인 여잔데 진짜 잘생긴 애보기 어려움
-
사문 윤성훈 한지 이기상 듣고있는데요 아직 개념도 못 끝냈고 마더텅 문제 양도...
-
몸에만 잘맞으면 암기량 적고 문풀하는 재미가 상당함(진짜 중요) 각 사상가의 논리적...
-
남자보고 귀엽다고 느낀 적은 있는데
-
부탁드림!!
-
내 주위 사람들은 잘만 씻던데 전자기기도 각종 청소용품으로 막 청소하는거 보고 엄청 신기했는뎁
-
지금 고3이고 3모때 미적 66 3등급 맞았는데 수학 어떻게 공부해야할 지...
-
어그로 죄송합니다 그냥 적어봤습니다.
-
이게 왜 여러 삽화의 병렬적 구조인지 잘 이해가 안됨뇨 직렬적 구조 아닌가요?
-
여름이었다. 0
아니 왜 벌써

이번글도 도움이 많이됐습니당ㅎㅎ재수했을때 수학 성적 진짜 많이 올려주신 고마우신 지형쌤.. 역시 인강 진출 하실 줄 알았습니다ㅠㅠ
헐 오랜만이야ㅠㅠㅠ 고마워!!! 갠톡좀주세요ㅎㅎㅎ