Orbi지형T_[점수를높이는5M.Column] Ch2.등비수열,수열의합'지형도를그리다'
게시글 주소: https://orbi.kr/00071447980
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
Orbi_Column_김지형T_수1(수열의합)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH2 Geometric sequence
CH3 Sum of a sequence
오늘 소개해드릴 챕터는 등비수열과 수열의 합 파트입니다. 첨부파일에는 등차수열/등비수열과 수열의 합 개념 부분만 올려두었어요. 이 자료는 현강에서 설명한 내용을 정리한 것으로, 필요하신 경우 다운로드하여 읽어보시면 큰 도움이 될 거라 생각합니다.
등비수열과 수열의 합은 등차수열 파트와 달리, 기출문항 중 중요한 문제는 많지 않아서 개념 위주로 정리하였습니다.
그럼 시작해볼게요!
Chapter 2: 수1 등비수열
(Geometric sequence)
등비수열은 무엇보다 공비를 직관적으로 파악하는 능력이 가장 중요합니다. 등비수열의 핵심은 각 항이 일정한 비율(공비)로 이전 항과 연결되어 있다는 점인데요. 공비를 빠르게 이해하고 활용할 수 있다면 문제를 푸는 속도가 훨씬 빨라질 뿐만 아니라, 다양한 응용 문제에서도 효과적으로 접근할 수 있습니다.
이와 같이 다양한 등비수열의 공비를 빠르게 파악하는 능력은 문제를 해결하는 데 있어 매우 중요한 역할을 합니다. 공비는 등비수열의 구조를 이해하는 열쇠이자, 다음 단계로 나아가는 출발점이 되기 때문인데요. 공비를 빠르게 파악하면 수열의 일반항을 구하거나, 합공식을 적용하는 데 훨씬 수월해집니다.
특히, 미적분에서 자주 등장하는 등비급수를 계산할 때도 공비를 정확히 이해하고 활용하는 것이 핵심입니다. 예를 들어, 등비급수의 합을 구할 때 사용하는 공식은 모두 공비의 성질에서 출발합니다.
공비의 크기(절대값)가 1보다 작을 때, 등비급수의 합은 극한값으로 수렴하게 되는데, 이는 무한급수 문제를 푸는 데 매우 중요한 개념입니다. 이때 공비를 빠르게 파악하고 공식에 대입하는 과정이 자연스러워진다면, 복잡한 계산도 한결 쉽게 해결할 수 있죠.
이번에는 등비수열의 합 증명 과정에 대해 살펴보겠습니다. 등비수열의 합 공식을 정확히 이해하고 유도 과정을 기억하는 것은 문제 풀이뿐만 아니라 수학적 사고력을 키우는 데도 큰 도움이 됩니다. 특히 공식을 단순히 암기하는 것에 그치지 않고, 유도 과정을 이해하면 다양한 문제 상황에서도 유연하게 응용할 수 있게 됩니다.
Chapter 3: 수1 수열의 합
(Sum of a sequence)
**(5)**번 문제는 모의고사 기출문제를 풀 때 종종 등장하는 형태로, 한 번 익혀두면 매우 유용하게 활용할 수 있는 유형입니다. 특히, 이 문제는 **(1)**번과 **(2)**번의 결과를 더해 정리한 것이기 때문에 구조적으로 간단하고 이해하기 쉬운 편입니다.
등차수열과 등비수열의 합 공식은 다양한 문제를 빠르고 정확하게 해결하기 위해 꼭 알아야 하는 핵심 도구입니다. 이 공식들을 제대로 활용하면, 복잡해 보이는 문제도 단순한 계산으로 빠르게 정리할 수 있어요.
오늘 다룬 내용은 비교적 어렵지 않지만, 개념을 몰랐던 학생들에게는 매우 유익한 정보가 될 거예요. 무엇보다 중요한 건, 공식을 단순히 외우는 것보다 그 원리를 이해하는 것입니다. 개념을 제대로 이해하면 다양한 문제에서 응용할 수 있어 학습 효과가 훨씬 커질 거예요.
다음 Column에서는 수학적 귀납법에 대해 다룰 예정입니다. 특히, 작년 6월/9월 모의평가와 수능 22번에서 출제된 문항들을 깔끔히 분석하며, 최근 귀납법 문제가 어떤 흐름으로 출제되고 있는지 한눈에 정리해드릴게요. 이를 통해 귀납법 문제에 대한 이해를 쉽게 높이고, 실전에서 바로 적용할 수 있도록 도와드리겠습니다.
혹시 오늘 다룬 내용을 더 자세히 배우고 싶다면, Orbi 인강에서 확인해보세요. 제가 직접 준비한 강의에서는 개념부터 문제풀이까지 하나하나 차근차근 설명해드리니, 혼자 공부하며 놓쳤던 부분도 확실히 채울 수 있을 거예요. 수학이 점점 자신있어지는 경험을 할 수 있도록 함께 만들어가는 강의가 되겠습니다.
오늘 하루도 화이팅하시고, 더 나은 내일을 위해 계속 나아가 봅시다!
Orbi 강의에서 여러분을 기다릴게요!
유익했다면 좋아요! 팔로우! 부탁드립니다!!!
그리고 수학 질문 마구마구 댓글 달아주시거나 쪽지주시면하나하나 상세하게 답장해드리겠습니다아아아
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강에 침수시키겠다
-
Gpt 검색기록 ㅇㅈ 34
저 강아지 별로 안좋아하는줄 알았는데 지금보니까 사랑하나봐요
-
몇년총합인가요
-
그게 나야 바 둠바 두비두밥~ ^^
-
왜 아직도 여기에…
-
연어 사러왔는데 5
마트가 닫음
-
이런 것도 다 나오고..
-
처음이라 그런지 많이 틀리네 ㅜ
-
재수할때 물지 31 뜨고 물리는 할게 아니다 싶어 물리-->사문 런은 확정을...
-
저녁에도 6
어떤 사태로 인해 술을 까야겠네...ㅡㅡ 개같은거
-
https://orbi.kr/00072740989 일단 다음 글도 국어사 쪽으로 써...
-
정상적인 칼럼 기존 풀이의 문제점 지적 개량 이후 인사이트 제공 쓰레기 칼럼 아무도...
-
저건 뭔데 불키면 더잘돌아다녀 ㅅㅂ
-
씹가능
-
저녁먹으러가는중 1
으하하
-
진짜 액션신 지리는데 극장판도 본편이랑 주제 의식 이어지는 게 좋음
-
개같네 11
미팅 2일전에 남친 생겼다고 대타도 안구해주고 토낌 ㅋㅋㅋㅋ
-
독재 저녁 13
학생들 사이에 껴서 먹으니까 뭔가뭔가네
-
며칠전부터 방금까지 총 세마리 집 좆됐다 ㅅㅂ ㅋㅋㅋㅋㅋㅋㅋㅋ
-
경우의 수 못해먹겠네
-
미적분 2등급 정도 실력이면 수분감 공통 step2 0
몇 일 정도 잡아야 하나요? 하루 4-5시간 수학공부 한다 가정했을때요 일주일이면...
-
미적 쌩노베면 2등급 찍는데 얼마나 걸림
-
뉴런 vs 스블 1
시발점과 기출 후에 6평 보고 나서 실전 개념 들어가려고 하는데 어떤 강의가 더욱...
-
윤석열씨방빼요 1
라고하면 안되겠죠?
-
나도 만년필 좋아하는데 15
만년필을 사진 않음
-
이거 돈 아까운건가요? 10
지방에서 수학학원이랑 영어학원 다니는 고2입니다. 학원비가 아까운거같아 오르비...
-
답정너들 팁 줌 2
지피티한테 말하면 듣고 싶은답 기가 막히게 잘해주니까 거기가셈
-
혹시 러셀 더프 5모는 언제부터 신청받는지 아시는 분 있을까요? 0
그리고 외부생 신청 많이 빡센편인지 궁금해요..
-
What's up, guys? This is Ryan from Centum...
-
프사 맘에든다 2
ORANGE
-
걸리면 진짜 뒤질수도 있을거 같음 학교에 보관할까 만년필 숨길 장소 추천점
-
후... 자극이 오는구나
-
쇼팽 145야 우린 이제 영원히 함께야
-
지금 제트스트림 0.5 쓰는데 좁은범위 필기에 약간 애먹고있음
-
반수가 마렵구나…
-
저공비행마렵네 6
관심도 없는 과목 공부하기 싫어~~~~~~~~~
-
할것도 없다보니 아까 올린 자료 보완해서 직접 표시해봄 ※현재 8개구만 조사한 상태...
-
김신조 죽었구나 1
박정희 모가지 따러 왔다는 무장공비 중 유일하게 남한에 투항한 사람
-
1저자 아닌것도 다 합친거같긴한데 그래도 말이되나 보통 1저자아닌것까지합치면 몇편쓰지
-
수학 커리 고민 0
작년에 대성만들었고 이번에 메가 끊으려고하는데 수학 누구듣는게 좋을까요? 통통이고...
-
Judge 0
-
를 뭐라그래여? 난 이 욕구+인정욕으로 동작하는데
-
잘 먹었다고 소문이 날 것인가
-
오래 전 기출 1
-
친구 세명한테 총합 8만원 빌려서 샀다 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
와 쉽지 않네

이번글도 도움이 많이됐습니당ㅎㅎ재수했을때 수학 성적 진짜 많이 올려주신 고마우신 지형쌤.. 역시 인강 진출 하실 줄 알았습니다ㅠㅠ
헐 오랜만이야ㅠㅠㅠ 고마워!!! 갠톡좀주세요ㅎㅎㅎ