[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
누구나. 자유롭게활동하는. 오루비. 괜히. 설래는맘. 품고.여사님들괴롭히지맙시다....
-
되게ㅐ 큼
-
ㅇㅈ 21
하관은 뭔가 말이 많길래 저번에 옯스타에 딱 한번 올려ㅅ음
-
미적 시발점이 좀 어려워서 딴 거 할려하는데 지금 속도와 가속도까진 했어요. 근데...
-
클월... 근데 이것도 잘가봐야 8강딱 당할것같지 왜
-
나랑 사귈 사람 13
어딨음
-
반응이 10
흥
-
제 여친을 소개합니다 10
예쁘죠
-
기대할게요♡
-
그냥 롤체 한 판 돌리고 자야겠다
-
핸드폰 공부랑 컴퓨터 공부함
-
고능아들이 많아서 멋짐 같이 수험생활을 이겨내는 동지 느낌 착해서 댓글을 마니...
-
이미지 아는대로 써드림 44
-
3모 보고 처진뒤로 공부할 때마다 눈물이납니다 눈물 안 날 때조차도 그냥 진짜 책...
-
미적하시는분들은 풀어보셈뇨
-
과년도 서바 문항 풀듯 들어간 자본이나 문항의 질이나 가격이나
-
생윤 커리 0
생윤 개념 한 번 다 돌리긴 했는데 뒤에 갈수록 제대로 안외우고 문제도 거의 못풀고...
-
독서 배경지식 1
정리해주는 유튜브 어디 없나
-
또하면내가개다 댓글예상:개한테 사과하세요
-
아오 좀 와서 16
다리 좀 주물러봐 어깨랑 좀 두드려봐
-
이해원 샀는디 다 풀고 풀만함?? ㅂㄹ면 다른 시중n제 사게요
-
[칭찬글] 오르비언이 얼마나 착한지 ARABOJA 26
(놀랍게도 이번주내에 모두 벌여진 실화) 오르비언: 오르비언: 오르비언:
-
방금 덕코를 처음 받아봐서요 현실에서 쓸 수는 있는건가요?
-
으하하하하 5
으하하하하하하하
-
4/3 작년까진 수동적으로 받아들이는 공부를 했다면 올해는 능동적으로 내것으로...
-
이해원 드디어 3
Day 4 수1 처음으로 다 맞았다 가르깔깔
-
확통 사탐으로 의대가 뚫리나요? 부산에 살아서 지역인재로 넣을건데 확통으로 의대를...
-
[칼럼] '수능을 수능답게, 수학을 쉽게 보는 방법.' - '수학1 - (1) 지수와 로그' 6
‘수능을 수능답게, 수학을 쉽게 보는 방법,’ - 수학Ⅰ- (1) ‘지수와 로그’...
-
걍 하지 말아버리셈 텔레포트, 파이어볼, 썬더볼트 쓰는게 남는 장사지
-
왜 뭐가 나냐;; 모자 쓰면 안되는 두피인듯
-
[단독] '현금 살포' 공무원노조 "시위 참가하면 10만원 주겠다" 1
전국공무원노동조합 산하 한 지역지부가 현금 지급을 내걸고 서울에서 열리는 각종 시위...
-
1. 국회, 그니까 입법부 권한을 대놓고 정면으로 부정중이죠? 2. 가짜뉴스...
-
아무래도 나라가 2
우민화 정책(국민들 바보로 만들기) 하고있는것같음 사람들 댓글 상태나 티비 이런거...
-
29700원으로 받고있음 지금
-
tim 해볼까 0
빨더텅 해볼까 생각했는데 이게 있었네 김승리 ebs만 듣고 있는데 ㄱㅊ...?
-
기분대로살아야지 0
계획너무싫어
-
자취하고잘취해요 4
둘 중 하나는 뻥임
-
나는 피곤하다 4
ㅈㄴ 피곤하다
-
네이버 실검 8
옛날에 유용ㅇ했었는것같은데 왜 없어졌죠..?
-
미적- 수특 내신범위까지+컨택트+4규+시대컨 공통-수특 끝까지+ 지인선n제+시대컨...
-
여자친구랑 삼겹살 5인 분에 소주 2병이었음 근데 성인 되어서 소주를 먹어보니...
-
이제 아지트다 ㅅㄱ
-
이번에 김기현 T 수 1,2 킥오프까지 보고 3모를 봤는데 낮은4? 조금만 더...
-
엄마 클리셰까진 뭐 그러려니 똑같네 했는데 죽음 묘사 + 주인공 감정 묘사에 특히...
-
요즘에는 3
티비에 왤케 정신병자들이 많이나오지 이상해짐.. 채널 3분의1이 이혼독려프로그램이랑...
-
vol1~vol3 각각 본책/해설편/복습편 일케 총 9권 있음 2026
-
동기중에 0
내일 신청해서 직관하러간다는 친구 있었음 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!