[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기!!!!! 10
-
션티 키스타트 4회독쯤 하고 NF 2회독 했는데 뭔가뭔가… 아직 부족한 것...
-
과외 같은거 안 할 생각이라 지금 땡겨둬야할 것 가틈 짧은 방학동안 동기들이랑...
-
남녀혼합 자습실 3
별로임 신경개쓰여
-
지방고에선 의대가기가 서울대가기보다 훨씬 쉽네
-
?gpt에서 갈아타볼만함?
-
인문논술용 최저 맞춰야해서 수학 빼고 국영탐(탐구 2개) 4개를 해야하는데 3합...
-
힘들다네요..
-
쥐뿔도 안 해줬는데 또 그걸 자랑하는
-
https://www.suneung.re.kr/sub/info.do?m=0401&s=...
-
예아, 무슨 돌아버린 일이 있길래 이리 떨떠름하게 있노
-
6모 신청 했음 0
학원 직접 안 가도 되는 거 개꿀이네
-
어떤 교재 살까요? 원문풀이가 가장 좋나요
-
과외를 위해 수2 공부를 시작해야한다는 사실이 믿기질 않네
-
국정원 고1이 이해할 수 있는 난이도인가요?
-
이젠 진짜 코파뿐이야... 그리지 코케 마지막 시즌일 수도 있는데 제발 코파만이라도 따게 해주세요
-
진짜 개 압도적이다 이게
-
뒤져도 별상관없자너
-
있나요...? 갑작스러운 약 처방 이슈긴 한데..........
-
https://atom.ac/books/13231-InDePTh+%EC%98%81%E...
-
종강안하나 0
할때됐는데
-
80프로 회복 완뇨
-
안녕하세요 한방국어 조은우입니다....
-
내가 이해한 지문 내용이랑 해설이랑 논리가 달라서 질문했더니 말은 해설이 틀렸다는...
-
60대 부부 일터 나간 오전 10시, 29살 아들은 방에서 나와 TV 켠다 9
2월 경제활동인구 통계 55~64세 女 61.5%가 일해 10년전 52%보다 확...
-
갑자기 삼도극을 빼질않나 과탐 죽이지않나 문학으로 승부보려하지를 않나 킬러배제같은 x소리를 하질않나
-
외야되...
-
얼굴뿐만 아니라 인성도 문제 있음
-
한완수 시작 0
기대된다 이걸 끝내면 나도 기하 고수가?
-
누가 또 기만런데
-
제가 논술을 아예 몰라서 그런데요.. 지원하는 과에 따라 지문과 문제가 다른 건가요??
-
집안에 고양이가 엄청 많았는데 무슨 고양이 요양원처럼 대부분이 아픈 고양이었음.....
-
아니면 그냥 정석적인 풀이 써져있나요??
-
군수 밸런스게임 3
04년생 지금 대학교 1학년이고 26,27수능만 본다는 가정하에 1. 25.8월...
-
아....
-
잠을 깨긴 깨야하는데 이거 어카지 ㅅㅂ
-
또 졋어요?? 12
보니까 또 가르나초 당신입니까..
-
얼버기 0
ㅍㅣ곤하고 뉸 아파
-
출근도장 11
쾅쾅쾅
-
진짜모름……
-
ㅎㅇ 2
-
생지 -> 생명사문 할 것 같은데 w관 가겠죠?? 그리고 관 바뀌어도 반은 똑같나요??
-
센츄달고싶당 0
6모는29꼭맞혀서센츄달아야징…… 3모수학고1범위라고유기한거지금생각해보니까너무아까움……
-
작년에 생지했는데 지구가 6모 5 9모 1 수능 4떴고 올해 3모 3떴는데 빨리 런하는게 답이겠죠?
-
문과 시절에 한지 사문 응시했었고 15수능 50 50 / 22수능 50 48...
-
사실안좋음.
-
곧 도태될 듯
-
26㐃능 ➙보늖 Lㅓ! 당장 ✇오✻➙☉르ㅂ1 엹품ㅌㅏ✯ㅇㅔ 오ㅏㄹㅏ✃...
-
오늘아침 성과 ㅁㅌㅊ 15
시험 며칠 안남았다...
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!