[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 6~7 과탐 5~6 국어 유기 ~ 30분 영어 유기 ~ 1시간 단어는 자투리 시간에 외움
-
1.점심에 양치 흡연자라면 꼭 하셈 입냄새 걱정 줄일수있고 시간도 5분밖에...
-
한의대생 집단 제적 오늘 판가름...일괄 구제될 듯 1
https://www.yna.co.kr/amp/view/AKR19960831001600004
-
독서<<절대안되는데….
-
무브링묻었다고 안사는 거 아냐?
-
22편
-
1.국어 풀기 2.영단어 외우기 뭐가 좋음?
-
25수능 생1 42점(백분위90)/ 사탐은 썡노베 사탐런 하고싶은 이유: 1.내...
-
이해원 4
공통 작년에 비해 난이도 좀 올라간 거 같은데 기분 탓인가
-
은총에그만정신을잃음
-
2025학년도 3월 고3 국어 모의고사 공통 영역 손해설 0
안녕하세요, 오랜만입니다! 국생국사 현입니다. 오늘로 3월 모의고사 실시 후 딱...
-
내 프로필 밑으로 쭉 내려가는건가 엄청난 게시물도 아니였는데
-
현역 때 부터 교육청 평가원 서바 수학을 88~80 사이에서 벗어난적이 없습니다....
-
사실 정확히는 6시간 반 정도긴 함 더 늘리면 탐구 시간이 줄어드는데 늘리는게 나은가
-
키작고귀엽고하얗고슬랜더인 사람이랑 연애하고 싶다 나는 도대체 언제쯤 할 수 있을까
-
내년 수능 치려고 하는데 다른과목은 괜찮은데 영어가 발목을 잡아서 올려봅니다....
-
연락은 ㅈㄴ 안 되는데 실제로 만나면 재밌는 사람
-
조급해하지 마 1
진짜로 하니까 되긴 되더라 트럭 처음 운전할때 기어 제대로 못 넣었는데 도로주행...
-
수특 문학 내신 0
수특 문학 분석 강의 들으려고 하는데 매E네 괜찮나요? 매E네 책 구성에 해설이...
-
심심해 0
-
수탐이 괜찮으면 5
어디 계산식이 유리함 ??
-
2진수 1의 보수 2의보수 하는거 손으로 너무 많이 해서 싫어짐
-
나보다 어린나이에 탈모진단 받은 사람이 있긴 할까.. 3
ㅠㅠ 키도 작은데 머리(지식)도 머리(숱)도 없는 삶..
-
수학 하루에 7시간 박을랍니다 ㅅㅂ 한국사랑 탐구는 귀찮아서 한줄로 밀었음
-
내일공부계획 2
-
그거 나인데 집에서 축 늘어진채로 자는거 아니면 ㄹㅇ 못자겠
-
분당 독재 4
분당 쪽으로 독재 다닐 거 같은데 잇올 수내,정자 디랩 어디가 제일 공부 분위기...
-
상크스 가계도 직전 유전까지는 체화했는데 나머지는 강의 듣고도 걍 내 ㅈ대로 품...
-
살 빼는데 머리까지…위고비, 식욕억제제보다 탈모 위험 52%↑ 21
캐나다 브리티시컬럼비아대 연구 결과 “탈모 우려되면 비만약 사용 재고해야” 덴마크...
-
그냥.. 귀찮다..
-
5/8 어려워져ㅛ다고 말은 들었는데 난이도가 꽤 있네요 시간안에 푸려니까 더...
-
저당시리얼 없낭 0
시리얼 우유에 말아먹는데 존나 달다 이래갖고 살 빠지겠냐고 시발아
-
돈없어서 야메추해달라고해놓고 편의점가는 '나'
-
맞팔구
-
헬스 4
반수(50)+알바(10)+학점(40) 이렇게 전력을 투자해야되는데 운동 몇일하는게...
-
중학교때 선행 ㅈㄴ하던 애 둘 있었는데 둘다 사회성도 별로고 걍 수탐퍼거의 전형적인...
-
왜 다 큰 대학생 새끼가 엠티든 뭐든 과에서 뭐 하는 거든 1학년 20살인데 다 안...
-
사랑하는 오르비언에게 14
안녕하세요 늘 그저그런 뻘글만 쓰던 무브링입니다.. 제가 이렇게 글을 시작하는...
-
긱사 살고 평일 아침:천원학식 평일 점심:일반식 평일...
-
아무리 생각해도 뭔가 좀 이상해서… 작년 이맘때랑 딱히 제가 알기론 재산상으로 달라진게 없는데…
-
라는 다짐을 매일 2시까지 함
-
투표
-
휴릅 끝 6
10분은 좀 많이 힘드네요 다들 잘 지내셨나요
-
작수 생1 90, 사탐은 쌩노베 사탐1컷이상만들기vs생명93이상 만들기 난이도,...
-
오늘의 공부인증 0
1.국 엑셀러레이터 1일치 강사주간지 1일치(독서만) 이펙트 문학 2지문 2.수...
-
딥한 인생 질문 7
개인적인 사정때문에.. 지금 세는나이로 22입니다 (만 21) 이번수능 치르고...
-
나에게 말해줘 4
사실을 말해줘 정말 니 마음을 말해줘
-
영어 듣기 인강 1
방학 때 혼자 마더텅으로 영어 듣기 공부하다가 너무 많이 틀려서 듣기 인강을...
-
하..개념 다시 봐야할듯,,뭔가 뒷부분 까먹은 ㅜㅜ
-
하루에 확통만 2시간 공부하고 일주일에 3번 마라탕먹기 캬
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!