[1000덕] 기하 문제 하나 더 나갑니다
게시글 주소: https://orbi.kr/00071392811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
N수생 1
용돈
-
ㅇㅈ 17
똑같은위치에서 봇치따라하기
-
인문1등인데걍자연계애들한테상대가안되네….. 과탐했으면진짜큰일났을듯 그리고 현역들...
-
수능준비한다는 티가 나지도 않으면서 적당히 재밌고(나는 재밌었음) 수능범위에서...
-
배가 출출하다 2
대충 간단하게 뭐 먹어야지
-
잘자요 2
-
저렇게 뛰는 서울대생 봄 뭐죠… 몸이 여러갠가
-
지브리 어케하는거냐
-
지브리 해봤는데 2
이건 뭔 딴 사람을 만들어놨네 ㅋㅋㅋ
-
이거 푸시는분 만덕드림 10
본인이 푼 풀이 올리셔야함
-
님들 삼투압이 0
농도차에 비례 OR 농도에 비례 뭐가 맞는거임? 생2 수특에는 1인데 백호가 2라했던거같아서요
-
본인 소신발언 사문 개념 윤성훈이 임정환보다 압도적으로좋은듯 3
기갈상 풀때도 윤성훈 작년 방식으로 A기? 이렇게 풀고잇고 무엇보다 임정환은...
-
bxtre.kr/
-
자러갈게요 5
책좀읽다가 자려구요 빠이
-
가사 좀 어려운데 내일이나 모레 번역 시도해볼까 너무 따끈따끈해서 아직 없을텐디
-
ㅃ이이이이까리 4
으행9
-
나 오ㅑ 이렇게 20
사납게 생겻냐… 고딩 때는 더 동글동글했렀는데 이러니 여자가 없지 ;;
-
아가 자야지 6
네
-
미적분빡공하기 1
내신의 순기능 근데 내 수준: 수특 레벨2 간신히 푸는 수준 이긴해 ㅋㅋㅋ...
-
수학개존나잘하고싶다 11
열받아서 자러감
-
모자에 쌩얼이었는데 그 분이 내 자리 의자 치고 가서 죄송합니다 하는데 눈...
-
그냥 지1생2 하는게 젤 낫나요?? 지1생1 31베이스입니다.
-
인증도 하고 뭐 다 했는데 지금 생각하니까 존나 수치스러움
-
https://v.daum.net/v/8oq83dva1c 2022년에 한...
-
?
-
하 시발 5
힘들어
-
오버워치재밌는데
-
나도 별을 품고 싶다
-
5모 목표 1
국어 백분위 98 수학 백분위 90 영어 1 동사, 사문 2 동아시아사 연표...
-
bxtre.kr/
-
왜 아직까지 못놓고 있지
-
얕게 아는 것은 많은데 제대로 할 수 있는 것은 아무 것도 없네요,,
-
요새는 미적 28번이 30번보다 어려운거 같은... 1
비주얼만 봐도...기분탓인가
-
인증 4
은 모르겠고 쌈뽕하게 171130푸는 정병훈쌤 보고가세요
-
기요미 목록 5
내 머리속에 이미 저장 완료되어있다
-
이게 그렇게 재밌다던데
-
다들 오랜만이야 3
작년에 그래도 자주 왔는데 난 변한게 없네 그나마 변했다고 차면 감정선이 무뎌진만큼...
-
인생에 여유가 생기니까 24
느긋하게 음악 감상이나 영화보는 게 훨씬 재밋어지는듯 수험생분들 화이팅 !
-
지피티 지브리 ㅇㅈ) 16
흠
-
현재 썸단계인데도 겁나 신경 쓰이고 예민해짐 헤어지면 그냥 패턴 나락 갈 듯;...
-
졸려 1
졸려
-
이천인가 거기 단과비 보편 부과임? 단과 빼버리면 단과비 안 내도 됨?
-
저 사실 이성애자에요… 그동은 속여서 죄송해요..
-
공부 비율을 지키겠어
-
2분째 하는중
-
풀이 2
만덕 안줌이제
-
시대 3관 창가 0
소음 신경쓰이시는 분 계신가요?
-
지브리 이거 10
머리카락 길면 여자로 그려주고 짧으면 남자로 그려주는 것 같아요
풀이과정 있어야 인정합니다~
아 ㅋㅋ
기하하하학
아 찍으려햇는데
되겠냐고 ㅋㅋ
3번?

완벽하네요 ㅎㅎ 정답
캬 기붕이햄기하황 ㄱㅁㅁ

저보고 옯해원님이 기하 잘한다고 안하고님만보고 잘한다 한건데요
이 문제는 타원의 방정식과 주어진 조건을 이용해 장축의 길이를 구하는 문제입니다. 아래 단계로 해결해 보겠습니다.
---
### 1. 타원의 기본 정보
주어진 타원의 방정식은 다음과 같습니다.
\[
\frac{x^2}{9a^2} + \frac{y^2}{5a^2} = 1
\]
이를 표준형으로 변형하면, 반지름에 대한 정보를 얻을 수 있습니다.
#### 장축과 단축
- 장축 길이: \( 2 \times 3a = 6a \)
- 단축 길이: \( 2 \times \sqrt{5a^2} = 2 \sqrt{5}a \)
---
### 2. 초점 정보
타원의 초점 거리 \(c\)는 다음 공식을 통해 구합니다.
\[
c = \sqrt{3a^2 - 5a^2} = \sqrt{4a^2} = 2a
\]
따라서 초점 \(F, F'\)는 \(x\)-축 위에 놓이며 다음 좌표를 가집니다.
\[
F(a, 0), \quad F'(-a, 0)
\]
---
### 3. 삼각형 면적 조건
문제에서 삼각형 \(PF'F\)의 내접원의 넓이와 삼각형 \(BFA\)의 넓이가 같을 때를 고려합니다. 이 조건을 이용해 \(a\)를 구합니다.
- 삼각형 \(PF'F\): 초점 \(F, F'\)를 포함.
- 삼각형 \(BFA\): 꼭짓점 \(A\), \(B\), 초점 \(F\) 포함.
#### 타원 점 \(A, B\) 좌표
1. 꼭짓점 \(A(3a, 0)\).
2. \(B\)는 \(y = \frac{1}{\pi x}\)와 타원의 교점에서 구합니다.
---
### 4. 계산 과정
수식을 풀이하며 \(a\) 값을 계산하고, 타원의 장축 길이를 구합니다. 수식을 정리 후 계산을 완료하겠습니다.
계산 결과가 예상대로 나오지 않았습니다. 방정식의 연립 과정에서 문제가 발생했을 가능성이 있습니다. 연립 방정식을 다시 점검하고, 단순화한 형태로 시도하겠습니다.
교점 \( B \)의 \( x \)-좌표를 구하는 식이 위와 같이 도출되었습니다. 이제 이를 통해 \( B \)의 \( y \)-좌표를 구한 뒤, 삼각형의 넓이 조건을 계산하여 문제를 해결하겠습니다.
점 \( B \)의 좌표는 다음과 같습니다.
\[
x_B = \frac{\sqrt{10} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}{10\sqrt{\pi}}
\]
\[
y_B = \frac{\sqrt{10}}{\sqrt{\pi} \sqrt{45\pi a^2 + 3\sqrt{5}\sqrt{45\pi^2 a^4 - 4}}}
\]
이제 \( BFA \)와 \( PF'F \) 삼각형의 면적 조건을 계산해 \( a \) 값을 구하겠습니다.
It seems like I can’t do more advanced data analysis right now. Please try again later. If you'd like, I can help explain the setup or guide you through solving the problem manually. Let me know how you'd like to proceed!

채찍피티꺼라...요3
문제 좋네요

감사합니다 ㅎㅎ여기서 막혓서요
오메 넓이같다 안썻다
님 기하는 어케 앎?
독학로망있어서 고2때 수학의바이블 살짝 끄적엿는데 2등급나왓죠………….. 독학이랑 안맞는듯
으악 내 아까운 8분 넓이같다 까먹고 8분동안 고민함
다른 이야기이긴 한데 A를 꼭짓점이 아닌 x절편으로 정의해야할 거 같아요..!
절편은 직선에서만 쓰이는 용어로, 타원의 정의에 의하여 점A는 꼭짓점이 맞습니다.
헐 진짜요?? 학교쌤이 맨날 절편이라고 하셔서 헷갈렸네요 감사합니다!!!
이런거는 어디서 배워요…? 그냥 제가 수업시간에 잔건가 저도잘멋알고잇엇네요…
흠 원래 꼭짓점이라고 부르지 않나...?
두 명이나 이러니까 약간 뇌정지가
꼭짓점인거까진 아는데
절편이 직선얘긴걸 몰랏어여
3번 미적러긴한데 풀어봤어요

좋습니다 ㅎㅎ 정답!!