[칼럼] 속도 변화량과 운동량 보존(물1)
게시글 주소: https://orbi.kr/00071372679
**감상 전 좋아요와 팔로우는 작성자에게 큰 힘이 됩니다!!
안녕하세요!! 오늘은 수학의 "거리곱"과 같이 계산을 조금(?) 줄여줄 수 있는 풀이법 하나를 들고왔습니다.
알고 계시는 분이 적지는 않을 것이라고 생각되는 주제이지만, 긴 칼럼은 아니니 즐겁게 읽어주시면 감사하겠습니다!
우리가 흔히 "운동량 보존" 하면 떠오르는 식이 하나 있습니다.
바로 이 친구죠 (v는 충돌 후 속도, v'은 충돌 전 속도입니다!)
우리는 위의 식을
와 같이 변형하고, 이를 운동량 보존 법칙이라 부릅니다.
(원래 p앞에 델타가 들어가야하는데 수식 입력기에서 안들어가네요.. 양해 부탁드립니다)
.
.
.
근데, 밑의 식의 vA-vA' 이 친구... 어딘가 낯이 익습니다.
충돌 후 속도에서 충돌 전 속도를 뺍니다.
사건 후 속도에서 사건 전 속도를 뺍니다.
맞습니다. 바로 속도 변화량입니다.
그래서, 우리는 운동량 보존 법칙을 다음과 같은 공식으로 변형하여 쓸 수 있습니다.
사실 이론은 여기서 끝입니다. (가만 보면 별거 없긴 합니다.)
사실 이 식의 진가는 문제를 푸는 데에서 나옵니다. 문제를 보실까요?
첫번째 문제입니다. 231116입니다.
초기 B의 속도는 8m/s인 것, 3초 이후 A와 B의 속도는 모두 5m/s 인 것이 자명하니
만약 운동량 보존식을 세우게 된다면, 식은 다음과 같을 것입니다.
이번 칼럼에서는 이 식 대신에, 속도 변화량을 이용한 운동량 보존식을 한 번 써봅시다.
이렇게 충돌 or 분리 상황이 단순한 문항에서는 사실 위를 쓰나 아래를 쓰나 큰 상관이 없습니다.
일단 한 문제 더 보실까요. 230613입니다.
정석적인 풀이는 다음과 같습니다.
속도 변화량으로 푼다면 다음과 같습니다.
표를 읽는 법을 말씀드리자면, 물체 또는 계의 전후 속도를 적어두고, 선 밑에 속도 변화량을 적습니다.
속도 변화량 밑에는 운동량이 보존 되도록 하는 물체 또는 계의 질량비 혹은 실제 질량값을 적어주시면 됩니다.
(이 질량비는 속도 변화량 비율의 역수가 되겠죠!)
여기까지 보면 밑이 조금 더 눈에 가시적으로 들어오는 정도? 될 것 같습니다. (나만 그런가)
마지막은 210917인데요, 이 방안을 극한으로 쓰면 어디까지 쓸 수 있는 지를 보여드리고자 합니다.
이번에는 속도 변화량으로만 풀어보도록 하겠습니다.
일단 모든 시점에서 A ,B, 우주인의 운동량의 합은 보존됩니다.
우주인, A, B가 함께 운동하던 시점에서 3개가 모두 분리 되는 시점까지의 변화를 파악해봅시다.
이 두 시점 사이 A, B의 속도 변화량은 v라 한다면, 식을 다음과 같이 적을 수 있습니다.
자연스래 A와 B의 속도 변화량 v는 2/3v0 가 되고, 분리 직후 A의 속도는 5/3v0이 됩니다.
이번에는 우주인, A, B가 함께 운동하던 시점에서 A만 떨어져 나오는 시점까지 분석해보겠습니다.
함께 운동하는 B와 우주인을 질량이 3m인 계로 취급하고 이 계의 속도 변화량을 v라 하겠습니다.
그럼 식은 다음과 같습니다.
따라서 v는 -2/9v0가 되고, 답은 4번이 됩니다.
이걸 직접 운동량 보존 법칙 만으로 풀어보신다면 이 풀이가 계산을 얼마나 줄였는지 체감하실 수 있을 것이라 생각됩니다.
.
.
.
.
아무래도 마지막 문제와 같은 복잡한 상황이 요새는 잘 등장하지 않기 때문에 이 풀이를 그닥 중요하지 않다고 생각하실 수도 있을 것 같습니다.
하지만 아까 제가 말씀드렸듯이, 저는 개인적으로 이 풀이를 "거리곱"과 비슷하다고 생각합니다.
한 마디로 말하자면, "없어도 상관없으나 있으면 도움은 되는 정도?"
굳이 식 여러 줄 달고 다니지 않고, 두번째 문제에서 보여드린 표 풀이처럼 훨씬 가시적으로 질량비를 구할 수 있기 때문이죠. 그래도, 익혀두어서 나쁠 것은 없으니 한 번 정도는 익혀보시는 것을 추천하기는 합니다. (이 정도면 해주자)
이 풀이는 두번째 문항처럼 질량비를 구하는 데 쓰실 수도 있고, 세번째 문항처럼 속도 변화량을 구하는 데 쓰실 수도 있습니다. 보통 질량비를 구하게 된다면 속도 변화량의 비가 주어져있는 상태일 것이고, 속도 변화량을 구하게 된다면 질량비와 남은 하나의 물체 또는 계의 속도 변화량이 주어져 있을 것입니다.
.
.
.
.
아무쪼록 긴 칼럼 읽어주셔서 감사드리고, 지적할 부분이 있으시거나 궁금한 점이 있으시다면 댓글 달아주시면 감사하겠습니다! 지금까지 lshdmw이었습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
재매이햄 0
그간의 행보는 쇼라고 해주십쇼...
-
노동가요 2
다 부를 줄 알게 되어 버렸음…
-
무조건 예약/렌더링 수준의 지문과 추론은 대비해야됨 그리고 사미인곡/유본학 지문...
-
다음대통령 3
재매이햄 맞나여?
-
ㅇㅇ 이건 양당 의견이 어느정도 일치되는 부분이라
-
난 삼도극 좋게 봤는데 10
근사충은 어차피 문제 개발하면 충분히 제초가능함 예를들어 세타의 1.5승 1.7승...
-
26수능 0
킬러부활(철학소재 국어영어지문, 삼도극 무등비 등 사탐의 해 부활(9과목 싹다...
-
윤석열 내려갔다고 과거유형이 억지로 부활하는것도아님 13
애초에 삼도극,무등비,합답형을 평가원이 내고싶어하는데 윤이 억제기를 해서 못냈던것도...
-
우리형이 서울 경찰이라 지금 비상근무 중인데 오늘 같은 날 혹시라도 몸 다칠까봐 그게 제일 걱정 됨
-
올해 재수하게된 재수생인데요 제가 수학 노베라 1월달부터 이미지 선생님 세젤쉬...
-
이재명이 대통령되는거는 좀 아닌데.......
-
한국판 국공내전 시작이라고
-
수능 건드릴 시간도 없을듯 의대 문제랑 똥 치우는데만 1년 쓸 거 같은데
-
상식적인 판결 0
지극히 상식적인 인용
-
다시 킬러랑 다 부활하는건가
-
‘헌법수호의 관점’에서 용납될 수 없거나, 대통령이 ‘국민의 신임을 배신’한 경우에...
-
역시 문디컬은 대 성 대
-
의반 줄거니까 이득이라면서 의반 모여라는 무슨 소리야 2
아니 시발 이건 테러잖아
-
캬 ~
-
진짜 빌런 등장
-
하
-
미적분 킬러 부활
-
엔수생들도 많잖아
-
진짜 정치력인지 정치질인지 아무튼 이 분야는 씹goat이라고 생각함... 우스갯소리가 아닌 ㄹㅇ로
-
참고) 3
오늘 새벽에 올린 탄핵 반대글의 좋아요수는 145개로 탄핵 찬성글의 좋아요수인...
-
첫 정답자 2000덕 드리겠습니다!
-
이거보려고 알람까지맞춤 아 개 씨발 ㅋㅋㅋㅋㅋㅋㅋㅋ기모띠
-
환율 정상화 0
하루만에 한달치 밥값 벌어버리기
-
[속보] 국민의힘 "안타깝지만 헌재 결정 겸허히 수용" 0
국민의힘 권영세 "안타깝지만 헌재 결정 수용" 권영세 "여당으로서 역할 못 해 책임...
-
인강사이트에서 제친구가 누락됫다고 구라치고 기출 한권 더 받던데 나도해볼까
-
나만 그런느낌인지모르겠는데 일단 그런느낌임
-
내 생각에 반대하면 중국인 너 중국인 쟤 중국인 이러다가 부모가 민주당지지해도...
-
ㅈㅂㅈㅂㅈㅂ 누가 공약으로 ㄱㄴㄷ철폐 걸어라
-
성적표 다른쌤들 0
혹시 수능 성적 담임쌤 진학쌤말고 다른학년쌤들도 볼 수 있나요?? 작년 수능 점수...
-
이미 기조가 너무 많이 흘러가 버린 데다가 단단히 찍힌 유형들이라 나와봤자 욕만 더...
-
ㅜㅜ 사/과탐선택 안 돼서 질문 남기느라 멍청하게 지원서 두 개 넣어버림… 이러면...
-
왜안키노
-
떴다고 생각하면 개추 떨궜다고 생각해도 개추
-
어케생각하심
-
들어가야하나 이미 재매이햄 확정인거 같은데
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
문과 여러분들도 성대의대 논술 챌린지 하십쇼
-
민주당 의대정책 0
1년 더 해서 의대가야하나
-
그래도 정시는 늘려줬던 분… GOAT 탄핵 정시 입시 선거
-
그런 나라가 있더래...
-
서울대 의과대학 공공의대 전환을 강력히 지지합니다
-
오르비에 이런 개소리 보는 것도 모자라서 좋아요까지 많이 받는 거 보고 진짜...
-
지지하는 의대생들은 무조건 7ㅐ추주고가라 ㅋㅋㅋㅋㅋ
-
과외 준비하고 술 마시러 가야지