[칼럼] 속도 변화량과 운동량 보존(물1)
게시글 주소: https://orbi.kr/00071372679
**감상 전 좋아요와 팔로우는 작성자에게 큰 힘이 됩니다!!
안녕하세요!! 오늘은 수학의 "거리곱"과 같이 계산을 조금(?) 줄여줄 수 있는 풀이법 하나를 들고왔습니다.
알고 계시는 분이 적지는 않을 것이라고 생각되는 주제이지만, 긴 칼럼은 아니니 즐겁게 읽어주시면 감사하겠습니다!
우리가 흔히 "운동량 보존" 하면 떠오르는 식이 하나 있습니다.
바로 이 친구죠 (v는 충돌 후 속도, v'은 충돌 전 속도입니다!)
우리는 위의 식을
와 같이 변형하고, 이를 운동량 보존 법칙이라 부릅니다.
(원래 p앞에 델타가 들어가야하는데 수식 입력기에서 안들어가네요.. 양해 부탁드립니다)
.
.
.
근데, 밑의 식의 vA-vA' 이 친구... 어딘가 낯이 익습니다.
충돌 후 속도에서 충돌 전 속도를 뺍니다.
사건 후 속도에서 사건 전 속도를 뺍니다.
맞습니다. 바로 속도 변화량입니다.
그래서, 우리는 운동량 보존 법칙을 다음과 같은 공식으로 변형하여 쓸 수 있습니다.
사실 이론은 여기서 끝입니다. (가만 보면 별거 없긴 합니다.)
사실 이 식의 진가는 문제를 푸는 데에서 나옵니다. 문제를 보실까요?
첫번째 문제입니다. 231116입니다.
초기 B의 속도는 8m/s인 것, 3초 이후 A와 B의 속도는 모두 5m/s 인 것이 자명하니
만약 운동량 보존식을 세우게 된다면, 식은 다음과 같을 것입니다.
이번 칼럼에서는 이 식 대신에, 속도 변화량을 이용한 운동량 보존식을 한 번 써봅시다.
이렇게 충돌 or 분리 상황이 단순한 문항에서는 사실 위를 쓰나 아래를 쓰나 큰 상관이 없습니다.
일단 한 문제 더 보실까요. 230613입니다.
정석적인 풀이는 다음과 같습니다.
속도 변화량으로 푼다면 다음과 같습니다.
표를 읽는 법을 말씀드리자면, 물체 또는 계의 전후 속도를 적어두고, 선 밑에 속도 변화량을 적습니다.
속도 변화량 밑에는 운동량이 보존 되도록 하는 물체 또는 계의 질량비 혹은 실제 질량값을 적어주시면 됩니다.
(이 질량비는 속도 변화량 비율의 역수가 되겠죠!)
여기까지 보면 밑이 조금 더 눈에 가시적으로 들어오는 정도? 될 것 같습니다. (나만 그런가)
마지막은 210917인데요, 이 방안을 극한으로 쓰면 어디까지 쓸 수 있는 지를 보여드리고자 합니다.
이번에는 속도 변화량으로만 풀어보도록 하겠습니다.
일단 모든 시점에서 A ,B, 우주인의 운동량의 합은 보존됩니다.
우주인, A, B가 함께 운동하던 시점에서 3개가 모두 분리 되는 시점까지의 변화를 파악해봅시다.
이 두 시점 사이 A, B의 속도 변화량은 v라 한다면, 식을 다음과 같이 적을 수 있습니다.
자연스래 A와 B의 속도 변화량 v는 2/3v0 가 되고, 분리 직후 A의 속도는 5/3v0이 됩니다.
이번에는 우주인, A, B가 함께 운동하던 시점에서 A만 떨어져 나오는 시점까지 분석해보겠습니다.
함께 운동하는 B와 우주인을 질량이 3m인 계로 취급하고 이 계의 속도 변화량을 v라 하겠습니다.
그럼 식은 다음과 같습니다.
따라서 v는 -2/9v0가 되고, 답은 4번이 됩니다.
이걸 직접 운동량 보존 법칙 만으로 풀어보신다면 이 풀이가 계산을 얼마나 줄였는지 체감하실 수 있을 것이라 생각됩니다.
.
.
.
.
아무래도 마지막 문제와 같은 복잡한 상황이 요새는 잘 등장하지 않기 때문에 이 풀이를 그닥 중요하지 않다고 생각하실 수도 있을 것 같습니다.
하지만 아까 제가 말씀드렸듯이, 저는 개인적으로 이 풀이를 "거리곱"과 비슷하다고 생각합니다.
한 마디로 말하자면, "없어도 상관없으나 있으면 도움은 되는 정도?"
굳이 식 여러 줄 달고 다니지 않고, 두번째 문제에서 보여드린 표 풀이처럼 훨씬 가시적으로 질량비를 구할 수 있기 때문이죠. 그래도, 익혀두어서 나쁠 것은 없으니 한 번 정도는 익혀보시는 것을 추천하기는 합니다. (이 정도면 해주자)
이 풀이는 두번째 문항처럼 질량비를 구하는 데 쓰실 수도 있고, 세번째 문항처럼 속도 변화량을 구하는 데 쓰실 수도 있습니다. 보통 질량비를 구하게 된다면 속도 변화량의 비가 주어져있는 상태일 것이고, 속도 변화량을 구하게 된다면 질량비와 남은 하나의 물체 또는 계의 속도 변화량이 주어져 있을 것입니다.
.
.
.
.
아무쪼록 긴 칼럼 읽어주셔서 감사드리고, 지적할 부분이 있으시거나 궁금한 점이 있으시다면 댓글 달아주시면 감사하겠습니다! 지금까지 lshdmw이었습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
특히 정시파이터들은 내신 버려놨으면 1년만에 성공 못 하면 대학진학이 불투명...
-
피고 심심한을 4
사칭혐의로 파면한다!!!
-
샤이틀창견 형님들 왜 자꾸 애꿎은 의주빈 걸고 넘어짐?ㄷㄷㄷㄷㄷㄷㄷㄷ 2
”이재명은 암튼 부유층기득권적폐어쩌고 의새집단 싫어하니까 무조건 대통령 되면 의사...
-
빨리 돌아오십시오
-
메디컬 말고 인설 공대도 영향 큰가요??
-
긴장 단디하셈 ㅇㅅㅇ 휘하에서 고통받았던 독서 출제진들 봉인 풀었다는 이야기니까...
-
맨날 중국인 지문 내던게 빌드업?
-
어서 입장표명 하십쇼!!!
-
잼 파 파
-
바로 극우의 국민저항권. 계속 이걸로 불복하던데. 빨리 조져야
-
어서 돌아와서 입장표명을 하십시요 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
일단 제가 들은 소식은 그냥 잠잠하게 끝난거 같은데 다행입니다
-
캬캬캬캬
-
삼수기록 7일차 0
국어 독서 기출 2021수능모델링렌더링지문 리트 300제 2019 16-18,...
-
순수 중학도형에다가 마무리만 급수 토핑 살짝 얹은거임 난 계속 29 급수 나왔으면 좋겠다
-
당연한 수순이었지 탄핵은. 일단 투표권있는 06은 개추
-
열심히 공부해서 빨리 입시판 뜨기
-
이재명은 윤석열과 다르게 철학이 확고한 사람임 포퓰리즘의 정점에 있는 사람인데 소득...
-
재매이형..안내실거죠??제발
-
????............ 나는 유튜브 레시피를 분명 봤는데 또시테?
-
이재명 되면 2차 부동산 버블 확정인데 버블 터지면 나라 암담할듯.
-
참 대단하다 10
어떻게 하나도 안 빼놓고 다 위헌? ㅋㅋㅋㅋㅋㅋㅋ
-
"윤두창 탄핵 인용을 축하합니다" ㄱㄱ
-
중앙대 뜬다.
-
어른으로서 못난 조언이긴 한데... 정치 관심 이제 싹 끄고 본인 공부하세요....
-
얘네는 ㅅㅂ;;
-
그냥 넘어가준듯요
-
잘잣다 2
-
저도 탄핵되어야 할까요 10
슬슬 자리에서 물러나야 될 때가 된건가 그동안 저를 열렬히 지지해주신 분들께 감사합니다
-
나랑 같이 투표나 하자
-
근데 윤카 탄핵을 막아서 이재명을 막는다 논리가 개웃기단거임 민주당 190석의...
-
웅!
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
저도 투표하고 싶은데 아가라 못할수도 있겠네요...
-
"읽으시었다"의, "었다"가 (앞부분)인것도 나름 괜찮지않음?? 0
"었다"가 뒤부분인거아는데 뭔가 제일 나중에 나와서 내(눈)앞으로 왔으니까...
-
도통 말이 없네요
-
올해 수능이랑 정원은 지금 교육부랑 평가원 손에 달렸음 2
내년부턴 '증원 정책을 계속 이어가느냐?'가 더이상 주제가 아니고 '추계위를 어떻게...
-
집이 그지라 대출 안 받고 살만한 상급지가 판교밖에 없음 ㅠㅠ
-
원래 여친 못 사귀는걸 성별 갈라치기 때문에 못 사귀는걸로 합리화 할수있음
-
포카칩n제 갖고 가면 좋음 한권에 수1 수2 선택 같이 있어서 한권으로 전과목 할...
-
ㅋㅋ
-
의과랑 예과랑 다른거임??
-
투표는 잘하면되고
-
[속보] 전군, 윤석열 전 대통령 탄핵에 '사진 철거·소각' 4
4일 국방부.
-
정시확대한다며미친놈아
-
바로 황소 비롯햔 초등의대반 폭격 이틈에 조지자ㅡ