-
이런거 제외하면 나머지는 대부분 조건 해석 잘하면 몇줄안에 끝나나요? 공통기준이요...
-
그정도로 쌓여있던 적이 없었음..
-
난 후다지롱 10
꿈에서 300번 정도 해본듯
-
해고 엔딩
-
맞팔구 3
이래도 댓글 없고 안해주는게 퇴물된 나의 처지라는거임 ㅇㅇ
-
8.5 야미~
-
드립이겠죠..?
-
사랑이 무뎌진 건 아쉽지만 증오까지 같이 무뎌진 게 다행임
-
개추ㅋㅋㅋ 0
개추워ㅋㅋㅋㅋㅅㅂ
-
이거 진짜 같음 아무것도 안해도 옆에 있는 사람 죽이고 싶음
-
원래 커뮤니티 라는게 본인이 쓰고싶은 글 있으면 쓰고 그게 ㅈ같으면 안보면 되는데...
-
에휴 리플리노?
-
그냥 어감 자체로 뭔가 압도적이지 않음? 그냥 무서움
-
처음에 딱 페이지 넘기면 긴장되서 머리가 잘 안돌아가는데 언매 37번부터 푸는게 그나마 나을까요
-
헉
-
ㅈㄱㄴ
-
마이케미컬로맨스.. 한창 중2병 도졋을때 광적으로 좋아함
-
쉬기로 했네요
-
파테가좋다 4
더이상의 팔로워는 받지않겠다.
-
제가 평소 학교 다닐때는 야자까지 해서 저녁9시가 되면 끝나고 바로 스카를 가서...
-
https://youtu.be/hbFE-eL-23A?si=G1BDTbjLFTHg3d4...
-
일상생활이 불가능해짐
-
넵
-
너무 적어요 (대충 우는짤)
-
. . . . . . 원신 짭 같은 느낌 ㅇㅇ...
-
단원별로 나눠저있어서 특정 단원을 집중적으로 조질수있는 n제의 장점도 없고 2,3점...
-
세상에 나보다 병신이 많은걸 알게 해줌 정치성향,성별,나이 관계없이
-
와......진짜
-
영국의 데이식스같은 느낌 ㅇㅇ..
-
타인과의 X교는 7
잘 안하는 편이에요....나는 소중하니까
-
3모 질문 19
이문제를 보고 공통접선을 어떻게 떠올릴수 있는거에요?
-
난 대성마이맥 19패스가 이렇게 좋은 건지 몰랐지.. 0
걍 진작 사놓을걸 에휴 지금 너무 비싸져서 월 회원권 이런 걸로라도 사서 강의 들어야겠네
-
타인과의 비교는 30
단기적으로 자존심을 채우기에는 매우 효율적인 수단이지만 결국 전부 열등감으로...
-
예쁘려나
-
키 183에 존잘에 의대생에 금수저에 군필에 착한 남자어때 4
나야! 쪽지줘~~
-
물1화1 표점 무려 152
-
큐?브 깔고 1
구경해야지
-
재수하는 비율 1
본인 8학군 출신인데 그냥 대학 안가는애들 : 지방대 : 잘간애 : 재수 비율이...
-
이신혁t는 유베용이라는 말이 있길래 겨울방학에는 엄영대t 수업을 듣고 지금...
-
ㅎㅇㅅ 7
둘이 초성 같은데 하는짓은 천지차이
-
직업 1
관제사 vs 교사 여러분의 선택은?
-
응 어짜피 고등학교는 4학년까지야~ 받아들이면 편해~
-
대학가면 3중1개는 오르비했던 여자임
-
학교왔는데 친구들보니까 걍 나보다 성적 높으면서 비틱질 하는 사람 으로밖에 안보임 죽고싶노
-
3모 때 32423 떴는데 5모 때 11111 받으려면 얼마나 열심히 해야 되나여
-
3모 12111나오고싶다~~~
-
나 빼고 단톡을 팠거나 나 빼고 다들 옯만추하거나 둘 다임
-
미적 28 자작 0
폐기품입니다 첫 정답자 1000덕이에요
-
우리학교쌤들이 젊고 이쁘신 편이긴 했는데 국룰아님??
난 경우가 한 8가진가 나왔는데
싫어
ㅋㅋㅋㅋㅋ
"객관식"
보기빼면
그럼 좀 낮아질듯뇨
수열 시러
수열 조아
근데 이게 22번이면 개꿀~하면서 받음
막상 풀면 생각보다 까다로운듯
보기엔 쉬워보이는데
이 사단 났는데 내가 너무 어렵게푼건가
무슨 챡이에요..?
이해원 n제 수1이용
아 작년거군요?
와 저도 의심하면서 마지막도전으로 저렇게 풀고잇엇는데…
6모에 나오면 수능에안나와서정말다행일거같아요….. 완전 멘탈 갈릴듯….
와 이제야 수형도 다 그렷는데 7가지중에서 6개는 또 어떻게 골라내는거지 와……………….
집에서 여유럽게 푸는데도 멘탈이 갈리네 모고에 나오면 이 여파로 탐구까지 다 망할듯
시간없어서 저문제 읽지도못한 사람이 승자네
이 문제 악질인게 생긴게 너무 쉽게 생김
ㅋㅋㅋㅋ
현실은 공차 경우의수 추론과정이 상당히 길어서 주관식으로 뜨면 자살 말릴듯
답지도 이렇게 풀어요….? 이러면 3페이지 걸릴거같은데
엄청 어렵지는 않아보이는데 의외로 까다롭나보네
a2=a1+2b1은 a2≥9, a4가 무슨 짓을 해도 2까지 떨어질 수 없어서 걸러지고, a2=a1-b1이 확정된 상태에서 a3=a2+2b2의 경우 a4까지 식이 확정되고 모순이 생겨 걸러짐. 실질적으로 꼼꼼히 따져야 하는 경우의 수는 a3=a2-b2에서 나누어지는 2개의 경우뿐임
불필요한 가지뻗기가 너무 많음
저는 그런 고능풀이가 안됩니다 ㅠㅠ
가지가 너무 야랄맞게 뻗는다면 진짜 이 가지가 끝까지 뻗을 필요가 있는지 의심해볼 필요가 있음
범위체크를 미리미리해야하는군요
추가로, 어차피 a5 이후부턴 a(n+1)=an-bn의 식을 따라갈 걸 안다면 굳이 b를 하나하나 더할 이유가 없음. 그냥 b5~b10까지 합 구하고 a5에서 한꺼번에 빼주고 말지
오 좋은 풀이 ㄱㅅ합니당
확실히 그런 습관을 안들이니까 고생하는거같아요
이 순간을 기점으로
가지 너무 많이 뻗으면 의심하기
너무 멀리 있는 값을 구해야 한다면 수열이 일정 주기로 반복되거나, 특정한 패턴이 있지는 않은지 의심하기
고능풀이 ㄷㄷ