수학에서 실전개념이라는게 뭐라고 생각함?
게시글 주소: https://orbi.kr/00071329880

답지풀이말고 천재적인 풀이같은거 있잔아
굳이 n축같은 교육과정 외 스킬 안 가져오고도 그래프로 푼다거나...그런거
실전개념? 뭐라그럴까 이런걸
예를들어서 저 밑에 문제 조건을 보고 y=sin(k/6)선대칭이구나 바로 알아내는...그런거
이런거는 어디서 배우는거임? 이런게 재능차이인가 기출 풀어도 저런 능력은 안키워질 것 같음
저런 직관은 어떻게 키우는걸까
저런거에 집착 안하고 정석풀이 위주로 공부하는 편이었는데 3등급 벽이 안뚫려서 고민이 많아짐
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는 성적 취향 모름요 29
생각해본적 없어요 아물론 저번학기 성적 주면 절하고 받슴니다
-
스카 다니면서 독재했는데 공부 시간은 어느 정도 나오면서도 너무 생활패턴이...
-
뭐가더낳냐
-
조까튼 월요일 5
축구도 비겨서 짜증나
-
좀 니글거리네 2
빵이 남았어... 야식의 부작용인가
-
히 이이 히 이이 이이 히 이이
-
그건 있다 학문적 적성을 판별하는데는 꽤 유용함 개념을 빠르게 받아들이고 적응이 잘...
-
쇼타 투척 0
음 역시 귀엽군요
-
어차피 내일 학교 안가는데
-
뭔잠이여 ㅋㅋ 10
내가 와따 잠 안옴 낼그냥 커피마시고 저녁까지 버틴다
-
어지러워요
-
담에봐 내일올려나 오겠지 내일봐
-
맛있게 와구와구 먹는중
-
경기력 병신어휴 0
이딴경기력으로 무슨 챔스를 나가겠다고 이 시발아
-
이기지 않은것. 그런거에요
-
이거 진짜라는 거임
-
방구석 여포임 단점은 현실노잼이라는거임...
-
지가 처 돌아가놓고 나보고 반말하면서 화내는 택시 등장
-
혼자 가야지!!
-
성격이 문제야 4
성격이 문제라고 생각함 에효효
-
내일 아침에 먹는다
-
1월달에 친구랑 술먹다가 들었던 건데 고2때 인스타 스토리로 증명사진찍은 걸 올렸던...
-
어느정도 공부에 관심 있는 사람들이 찾아서 오는 커뮤니 어느정도 실력이 있다는...
-
안그럼 요즘 잠이 안오더라고
-
인서울 높공 전자공학을 꿈꾸고 있는 학생입니다. 그런데 제가 공부할 때 처음에는 좀...
-
크아악
-
요즘 느끼는거 5
귀차니즘이 많이 심해짐 근데 도파민을 찾아다님 근데 도파민 내용에 나는 없어야함 인생ㄹㅈㄷ
-
뭐 잔다고? 19
나 ㅇㅈ할건데 댓글 시발럼들아
-
안녕히 주무세요 6
잠 잘자고 여러분 같이 의대 갑시다
-
친구관계는 1도 인생에 필요하지 않음 아무리 친해도 심각하게 싸우면 다시 싸우기...
-
그럼.. 공부도 gpt없이하고 과제도gpt없이했다고요? 어떻게요? 꺄아악
-
새벽마다 나 6
띠발..
-
vs 먹산 중에 뭐 사야 됨
-
니 남친 지나간다 2번(버스, 학교 복도) 그냥 웃겨서 웃고 있었는데 야야 쟤...
-
범위가 있는 증/감 문제에서 도함수를 구할때 미지수를 일일이 구하고 인수분해하는...
-
니 성격을 봐라!!!!!!!!!!!! 거울도 보도록!!
한 문제 한 문제를 소중히 여겨야댐
찌찌뽕
근데 문제 하나 무작정 처다본다고 그런게 떠오르지는 않음 나는....
이제 저 문제에서 선대칭 아이디어를 알앗으니 비슷한 조건이 나왓을 때 이 문제를 공상하듯이 풀 수 잇으면 정말 빠르게 실력상승이 가능함미다
저건 실전개념보단 짬바임
저런거 기출 풀다보면 보입니다
단 재능 있는 사람은 개념만 해도 보여요
재능 없으면 기출 5회독은 해야 그제서야 보이고요
그냥 4점짜리 벅벅 회독 돌리면 감이 오는걸까용...? 어떤 생각을 해야하는건지 궁금해용... 수분감 이런거 들어봤는데 걍 현우짐풀이 외우기 느낌이라 손절햇어요
다른 사람의 풀이에는 사고과정이 안 들어있어요. 물론 해설지가 아니라 강의같은 경우에는 그 사고과정을 어느정도 설명해주지만, 그럼에도 본인 스스로 어떻게 사고해서 이 문제가 풀린건지 정리할 필요가 있습니다.
문제를 열심히 시도를 해보고 해설을 봐야하는 이유도 이때문입니다. 그냥 보면 사고과정을 파악하기가 쉽지 않거든요. 어느정도 부딪혀보고 해설을 보면 여기서 왜 그 생각을 햇어야 햇는지를 파악하기가 수월해지죠. (또 왜 내가 못 풀엇는지 등등..)
강사가 가르칠 법한, 혹은 널리 퍼져 있는 실전개념과 공식들을 우선 숙지하고 있어야 함. n제나 기출을 풀 때 우선은 푸는 것 자체에 집중하되, 그 풀이가 덜 다듬어져 있다면 혼자서 끙끙대보는 거임. 여기서 적용 가능한 개념이나 공식이 없을까? 필요하다면 해설지나 강사의 풀이과정을 참고해서라도 이런 풀이를 많이 접해야 함. 이런 식으로 문제를 충분히(충분히의 기준은 사람의 재능에 따라 갈림) 접하다 보면 새로운 문제를 볼 때 기시감이나, 말로 표현 못할 직감이 들 때가 있음. 이 직감은 문제를 많이 풀수록 더 자주, 더 뚜렷하게 나타남. 이게 쌓이고 쌓여서 풀이도 다듬어지고, 빨라지는 거
+번외로, 위의 문제는 선대칭을 꺼낼 필요 없이 그냥 y=sinx와 y=sin(kπ/6)의 교점의 개수로 생각해도 무방함. 어차피 교점의 위치를 알 필요 없이 개수만 구해도 된다면, 구간에 관계없이 sinx=sin(kπ/6)일 때 교점이 생기므로 굳이 그래프를 희한하게 안 그려도 됨. 당연히 이런 아이디어도 다양한 문제를 많이, 아주 많이 풀다 보면 자연스레 떠오름