공리를 부정해도 무모순임
게시글 주소: https://orbi.kr/00071314171
1. 공리는 참이라는 증명이 없다
2. 따라서 귀류법 증명도 없다
3. 따라서 공리를 부정해도 무모순
그리고 허준이 교수가 말하길 수학은 무모순이기만 하면 된다고 함
따라서 실수의 완비성 공리를 부정해도 무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
평가원은 학생이 새로 미지수 잡는거를 3개 이상 못하게 함 이게 수능 출제 매뉴얼에...
-
같이 몇마디씩 하는 애들은 많은데 깊게 친한 애는 거의 없음. 모르겠어. 주변인이...
-
핫식스 몬스터 종류 상관x 맛있는거 ㅊㅊ좀요
-
지2 컨사실분? 1
리바이벌 플로우 브릿지4회까지인가까지 받음 다구매하면 나진환책들, 지2유자분새책걍드림ㅇㅇ
-
6모까지 국수영만 파기 11
올 111 ”가능할까요?“
-
일반물리학 질문 2
스카이콩콩+사람 계의 역학적에너지를 구하라는데 챗지피티가 1/2*k*x^2-mgx로...
-
외모가 젤 중요한거 아님? 돈은 내가 잘살라고 버는거지 결혼 불가능 -> 결혼 가능...
-
뭐지 좀 무서움요
-
지구 1
작년에 오지훈쌤 들었는데 이훈식쌤으로 바꿔보고싶은데여 개념 강의는 볼륨이 좀 있어서...
-
암 고치는 종양외과 의사 되고싶음
-
네
-
난 사람이 아님ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 그냥 그대로 다 버릴각나오는거임 그냥
-
n수는 개추 일단 나부터
-
신체비율 3
위에부터 0:0:10:0ㄹ
-
둘중 뭐가 더 좋나요?
-
신체비율 5
머리 상체 하체 8:1:1
-
6평전까지 진짜 미친새끼마냥 달려봐야지
-
애들이 뭘 모르네 11
남자는 오히려 외모 좀 떨어져도 여러 전형으로 여자한테 호감 사는게 가능한데 매력이...
-
나만 들을꺼니까 아무도 듣지마 꿀은 조용히...
-
오른팔 못 쓰게 붕대로 칭칭 감아버라고 싷다
-
공부 비율 2
국:수:영:탐=3:5:2:0.1
-
6모땐 언매할거지만 공부하기 귀찮아서 개념기출 아직도 못 끝냄 이슈로 화작으로...
-
수학 6~7 과탐 5~6 국어 유기 ~ 30분 영어 유기 ~ 1시간 단어는 자투리 시간에 외움
-
1.점심에 양치 흡연자라면 꼭 하셈 입냄새 걱정 줄일수있고 시간도 5분밖에...
-
한의대생 집단 제적 오늘 판가름...일괄 구제될 듯 1
https://www.yna.co.kr/amp/view/AKR19960831001600004
-
독서<<절대안되는데….
-
무브링묻었다고 안사는 거 아냐?
-
22편
-
1.국어 풀기 2.영단어 외우기 뭐가 좋음?
-
25수능 생1 42점(백분위90)/ 사탐은 썡노베 사탐런 하고싶은 이유: 1.내...
-
이해원 4
공통 작년에 비해 난이도 좀 올라간 거 같은데 기분 탓인가
-
은총에그만정신을잃음
-
2025학년도 3월 고3 국어 모의고사 공통 영역 손해설 0
안녕하세요, 오랜만입니다! 국생국사 현입니다. 오늘로 3월 모의고사 실시 후 딱...
-
시발 국어 두문제 수학 한문제만 더 맞으먄 가는거얐는데 동의동의시바류ㅠ
-
내 프로필 밑으로 쭉 내려가는건가 엄청난 게시물도 아니였는데
-
현역 때 부터 교육청 평가원 서바 수학을 88~80 사이에서 벗어난적이 없습니다....
-
사실 정확히는 6시간 반 정도긴 함 더 늘리면 탐구 시간이 줄어드는데 늘리는게 나은가
-
키작고귀엽고하얗고슬랜더인 사람이랑 연애하고 싶다 나는 도대체 언제쯤 할 수 있을까
-
내년 수능 치려고 하는데 다른과목은 괜찮은데 영어가 발목을 잡아서 올려봅니다....
-
연락은 ㅈㄴ 안 되는데 실제로 만나면 재밌는 사람
-
조급해하지 마 1
진짜로 하니까 되긴 되더라 트럭 처음 운전할때 기어 제대로 못 넣었는데 도로주행...
-
수특 문학 내신 0
수특 문학 분석 강의 들으려고 하는데 매E네 괜찮나요? 매E네 책 구성에 해설이...
-
심심해 0
-
수탐이 괜찮으면 5
어디 계산식이 유리함 ??
-
3연술 3
소주 위스키 소주 좋습니다
-
3모 4 6모 3 9모 2 수능 1 재수는 만점을 목표로..
-
잇올 그만둬야하나..
귀류법 증명이 없다는 게 귀류법이 증명의 도구로서 쓰일 수 없다는 거임?
그냥 귀류법으로 증명할수 없다는 말임

흐흐 쿠쿠리박사님 오랜만이다공리가 참이라는건 증명할 수 없어도 공리가 거짓이다는 공리계 안에서 거짓인 명제임으로 공리들로 모순인걸 증명 가능함
공리를 p로 한다면 ~p는 p에 의해 모순인게 보여짐
~p를 주장하려면 새로운 공리계를 만들어야함
공리의 정의가 다른 명제에 연역되지 않으며 항상 참으로 여겨지는 명제이므로1 2는 당연한거고
허준이 교수님이 말한 수학은 무모순이기만 하면 된다 라는 말에서 '무모순'이 모순이걸 모순이 아니라고 우기는걸 말하신게 아님
3은 앞에서 말했다시피 모순임

자기 혼자만 주장하는 공리는 의미가 없으니깐요…혼자만 주장하는 공리는
제가 사실 달이 4개인데
빅브라더가 이 사실을 숨기고 있다고 주장하는 거랑
다를 게 없으니깐요…?