메인글 소신발언
게시글 주소: https://orbi.kr/00071185498
O/X 퀴즈(5000덕)
자연수에서 자연수로의 함수 f(x)가 일대일대응이라 하자(즉, 역함수가 존재한다). 수열 a_n = 1/f(n)에 대해,
은 항상 성립할까?
성립하지 않는 경우 반례, 또는 성립하는 경우 만족스러운 증명을 제시하시는 첫 번째 분께 5000덕을 드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
해설쓰면서 들으면 흥이 차올라요
-
과거의 나임 이게 진짜 정병포인트인
-
사람마다 다른데 최저가 없는 수준인 사람도 있으니 연애 못 하는 건 외모가 문제가...
-
벽이랑 대화중 3
ㅈㄴ 빡침
-
여장하면 사람들 달라붙는다니까
-
가고싶다 2
로이킴 왜 연말만 콘서트해
-
이상형 7
어 형이야
-
얼굴이라도 예뻐서 관계가 유지되는거더라
-
성별
-
백합이 만개하겠구나
-
https://link.bgzt.in/JdhC
-
그게 나야 10
-
저일 수도 있고 아닐 수도 있음
-
시발시발시발시발
-
단순함. 예쁜 애한테 상처 많이 받음 그래서 난 무조건 성격. 2순위도 성격. 3순위도...
-
성격이 개망함…
-
하이닉스 성과급 땜에 계약학과 예비 안빠지는거아니냐 1
내앞에 연고대 공대 1지망인애들 두세명있는데......
-
찰떡파이 맛있는데 제 취향이 아님 츄라이츄라이
-
제일행복하긴할듯 수명 대충 20년으로 적당해, 태어나자마자 인간이 다 해주고...
-
토라도라 다음으로 좋아하는 럽코임요
-
아오 두 개나 잘못 삼 오해원만 살라했는데
-
??? : 리스크 있어도.. 아.
-
애플워치사는거 에바겠지 수영할때 기록 재고 싶은데
-
하 정말 요며칠 잠도 못 자고 정말 꼴이 말이 아니었음 보통 치과 여러군데 가보라고...
-
또래들이 다들 멋있어지고 자기 꿈을 향해 나아갈때 나만 방황하고 제자리걸음인거...
-
체감 난이도에 대해서..
-
밥사달라고 12
땅거지라고
-
5번 검토했는데도 문제오류나오는거보면요ㅇㅇ.. 아오 걍 갈아엎어야지
-
옯만추하면 17
여기 이미지 깨져서 안됨..
-
만화에서도 지능 올리면 얼굴은 못생겨지던데...
-
찰떡파이 아니겠지
-
환생했다가 더 조진인생 될까봐도 있고 굳이?싶기도하구 그냥 환생 이런거 없고 이번생이 끝인게나을듯
-
옯만추 4
먹는건가
-
아주 가소로워요
-
같은 대학 사람 밥 사주기 헉헉
-
전 버프 받겠습니다
-
공부할 시간에 선행 ㅈㄴ 마니 해서 수능 180개 찍맞하고 대학 간다
-
ㅇㅈ 22
아 쫄리네..
-
수능 끝나고 해보고 싶어요 제 이상형이시면 납치함
-
알phㅏ메일이 3
되고싶진 않다 그냥 이대로 사는게ㅜ좋다
-
ㄹㅇ
-
제육 보까와
-
정신나가겠네 0
예비1이 안빠질수도 있다는 그 불안감
-
ㅈㄱㄴ
-
가망있다vs없다 4:27임뇨 이번생도망이네요,
-
난 일단 대학을 잘 가야겠음 나도 알파라는 것 좀 해보자
-
어이 오마에! 2
으ㅏㅏ
-
의대 간다
-
레어 샀당 8
귀엽당흐흐
-
생일선물이란거 4
정말 오랜만에 해보네
왠지아닐것같다
예?
여기서 자연수 집합은(당연히) 0을 포함하지 않습니다
항상 0수렴이면 고대 자퇴함
이러면 댓삭을 못하는데 아
딱봐도 아닐것같은데
f가 감소함수이면 양무한대로 발산한다?
f(n)에서 n 이 무한대로 갈때 f(n)도 무한대로 가는지를 보면 되는거 같은데
n이 무한대로 갈대 f(n)이 무한대로 안간다고 하면 유한개의 자연수를 배정한다는건데 무한대를 유한대에 배정하는게 안될거 같아서 0으로 수렴한다에 베팅해보겠습니다
오
실제 증명도 거의 이 논리에요
you made my day
오오
레전드고수 ㄷㄷㄷ
이거 정리 이름이 뭔가요
딱히 이름이 있지는 않아요
증명 보고 싶으시면, 챗지피티 o1한테 물어보면 잘 답해주더라고요
아니면 내일 중으로 올릴 엡델 칼럼에 저것 해설도 포함되어 있어요