정말 멋잇는 문제 2
게시글 주소: https://orbi.kr/00071149712
6x6판이 2x1의 조각으로 덥혀있다. 이때 항상 이 판을 두 직사각형으로 나눌 수 있음을 증명하여라. (어떤 조각도 두 개의 직사각형에 걸쳐있지 않다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그럼 1달 동안 성뽕 가득찰 수 있는데 ㅋㅋㅋㅋ
-
한국외대 합격생을 위한 노크선배 꿀팁 [외대25] [학교근처 맛집탐방] 1
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는 예비 한국외대학생,...
-
행복해질수읶어요
-
어떤 분이 혹시 공사하시는 분이냐고 물어보심... 부끄럽다
-
예비 고3 국어 0
마더텅 부터 끝내는게 좋을까요 아니면 강기분과 같이 하는게 좋을까요?
-
이번 수능 80점 미적 (20,21,22 28,30)나왔습니다 미적은 그래도 어려운...
-
화1단♥️
-
아
-
진학사 점공 2
진학사 점공에 들어온 사람들은 실제로 해당학과에 지원한거죠?
-
나 현역 재수때 생각나서 ptsd오네...
-
그거때매 지니까 아직도 못잊겠어
-
정말 보고싶어서 올린건데.. 나중에 골반에 초상화 타투도 박을건데…
-
근데ㅜ9평쯤부터 게시물이 안 올라오는 공스타는 왜그럼 6
9평 망하고 수능까지 망한건가
-
기하 차별아닌가요? 소수과목 차별하는건가요? 제정신이에요?
-
호우 1
환전지연없이 안전한사이트입니다 각종이벤트도 진행중이니 즐겨보세요 호우평생주소.com
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음

먼저 푼 사람이있었다니