미적분 문제 (2000덕)
게시글 주소: https://orbi.kr/00071139139
첫 풀이 2000덕 드리겠습니다!
(+ 자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
마지막말 강박증? 그런거 있는친구 AI챗봇마냥 얘가 꼭 마지막 말을 가져가야됨 얘랑...
-
근데 올해는 설높공과 의대 동시 합격이 많아보이는데 3
그럼 설 높공 갈까요? 아님 의대 갈까요? 설 높공 지원자들 중에서 메자의 합격...
-
학원에서 너무 어려운 문제만 풀려서 약간 불안?해요. 시발점 본교재 워크북은 다...
-
성뱃 나왔어요 13
-
이번엔 자아 없애고 가르쳐주는대로 한번 해보게…
-
토익 결과 5
왜 가채점에서 더 빠지농.. 에헤이 조졌네요 RC는 20분 남았을때 잘 한줄...
-
얼마전만해도 13이었는데
-
언매 강민철쌤 함 들어볼라고 했는데 교재 가격 보고 런함 7
걍 이원준쌤 언매만 듣고 양치기로 조져야겠음 이원준쌤 문학 전공하셔서 그런지...
-
아픈것도 서러운데 더 서럽네
-
기차지나간당 12
부지런행
-
1월 10일까지 예측 무료공개라 되어 있길래..
-
사문지구 0
사문지구를 하려는데 과탐 사탐 모두 허용이 되는 곳이어도 1과/1사 지원가능이...
-
제 몸에 도청장치가 있고 집에서 전파로 절 쳐다보는거 같아요 4
이러지않고서야 제가 산 주식, 코인만 떨어질리가 없잖아요ㅜㅠ
-
과탐 원과목 3
탐구선택 바꿀지 고민중인데 현역때 물1이었는데 물1 쭉 밀고 가는게 나을까요.....
-
뉴런 이해가 잘 안되는데 시발점 해야하나요
-
문학 교육청 기출만 모아놓은 문제집 있음?
f(x)=0, f(x)=1/2 (사실 찍음요ㅋㅋ gg)
y에 0을 대입해보면 f(x)=2f(x)*f(0) => f==0 or f(0)=1/2
f(0)=1/2인 경우.
x에 0을 대입해보면 f(2y)=f(y).
f(1)=c라고 하자. 그러면 n이 무한대로 갈 때 f(2^n)=c이다.
f(alpha)=c가 아닌 alpha가 존재한다고 치자. (alpha is not 0).
n이 무한대로 갈 때 f(alpha)=f(2^n(alpha))=f(2^n)=c이므로 모순이다.
따라서 모든 0이 아닌 x에 대해서 f(x)=c이고, f는 연속함수, f(0)=1/2이므로, f==1/2밖에 해가 없다.
즉, 모든 해는 f==0, f==1/2.
이거 맞나 미적분을 잘 몰라가지고 ;
정답!
앗싸
어떤 실수 d != 0과 실수 a에 대해 f(a)= d이면, f(a+2*0) = d = 2*d*f(0)이므로 f(0)=1/2이다.
연속의 정의에 따라 실수 ε가 존재하여 |x|<ε이면 |f(x)-1/2|<1/4, 특히 f(x)>1/4인데 n = max([log_2(|a|)-log_2(ε)+1], [log_2(|d|)+3])에 대해 |f(a/2^n)| = |2*f(0)*f(a/2^n)*1/2| = |f(0+2*a/2^n)*1/2| = |f(a/2^(n-1))*1/2| = |f(a/2^(n-2))*1/2^2| = ... = |f(a)| * 1/2^n < |d| *1/|d|*1/4 = 1/4이고 a/2^n < a*ε/a = ε이므로 모순이다.
(단, [x]는 x보다 작은 최대의 정수, max(a, b)는 a와 b 중 최댓값)
한문장은 걍 불가능이라 두문장으로
문제 조건 안쓰고 연속 정의로 함요
근데 f(x)=1/2도 안되는거 아닌가요
아 되는구나
케이스 하나 안봤네요
아 문제를 잘못 읽었네 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
굉장히 엄밀한 증명이네요ㄷㄷ
개망함요
f(0)=1 되는걸로 봐서
정확히 말하자면 두 번째 문장은 ‘f(2x)=2f(x)가 성립하고 f(0)=1/2인 함수는 존재하지 않는다’를 증명한 셈...
사실 이게 더 어려울지도