미적분 문제 (2000덕)
게시글 주소: https://orbi.kr/00071139139
첫 풀이 2000덕 드리겠습니다!
(+ 자작 아닙니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2023년 9월 성대 수시 지원 But 당연히 불합 (당시 6광탈이었어서 합격자...
-
주변에 170안넘는 애들이 없어서 모르겠네
-
재수 4
재수해서 경북대 전자면 어떤가요? 이번에 조금 더 잘할 수 있었는데 아쉽네요
-
눈이 너무 높아지는 것 같음 자퇴하기 전에 수시 준비할 땐 몇 년동안 생기부로...
-
점수공개 보니까 추합 끝자락이거나 불합일 것 같네요 이미 재수했고 이제는 대학...
-
점공 괜히봤다 4
ㅋㅋ안락사
-
"환자·의사 고통은 뒷전? 한의사들의 음흉한 정치질 논란" 51
"안녕하세요. 한국암환자권익협의회입니다. 저희는 대한한의사협회 의뢰로 '의료정책...
-
외대 어문 소수과 12
내가 쓴 과만 폭인 것 같네....... 다른 데 넣었음 최초합인데 허허 추합이라도...
-
ㅇㅈ) 주식 익절 인증 39
거래 4일간 판매수익인데요 사실 숏 아니면 지금 잃을 수가 없긴 해요 (제...
-
삼수욕구를 불태우네
-
꿑말잇기 ㄱㄱ 32
번따
f(x)=0, f(x)=1/2 (사실 찍음요ㅋㅋ gg)
y에 0을 대입해보면 f(x)=2f(x)*f(0) => f==0 or f(0)=1/2
f(0)=1/2인 경우.
x에 0을 대입해보면 f(2y)=f(y).
f(1)=c라고 하자. 그러면 n이 무한대로 갈 때 f(2^n)=c이다.
f(alpha)=c가 아닌 alpha가 존재한다고 치자. (alpha is not 0).
n이 무한대로 갈 때 f(alpha)=f(2^n(alpha))=f(2^n)=c이므로 모순이다.
따라서 모든 0이 아닌 x에 대해서 f(x)=c이고, f는 연속함수, f(0)=1/2이므로, f==1/2밖에 해가 없다.
즉, 모든 해는 f==0, f==1/2.
이거 맞나 미적분을 잘 몰라가지고 ;
정답!
앗싸
어떤 실수 d != 0과 실수 a에 대해 f(a)= d이면, f(a+2*0) = d = 2*d*f(0)이므로 f(0)=1/2이다.
연속의 정의에 따라 실수 ε가 존재하여 |x|<ε이면 |f(x)-1/2|<1/4, 특히 f(x)>1/4인데 n = max([log_2(|a|)-log_2(ε)+1], [log_2(|d|)+3])에 대해 |f(a/2^n)| = |2*f(0)*f(a/2^n)*1/2| = |f(0+2*a/2^n)*1/2| = |f(a/2^(n-1))*1/2| = |f(a/2^(n-2))*1/2^2| = ... = |f(a)| * 1/2^n < |d| *1/|d|*1/4 = 1/4이고 a/2^n < a*ε/a = ε이므로 모순이다.
(단, [x]는 x보다 작은 최대의 정수, max(a, b)는 a와 b 중 최댓값)
한문장은 걍 불가능이라 두문장으로
문제 조건 안쓰고 연속 정의로 함요
근데 f(x)=1/2도 안되는거 아닌가요
아 되는구나
케이스 하나 안봤네요
아 문제를 잘못 읽었네 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
굉장히 엄밀한 증명이네요ㄷㄷ
개망함요
f(0)=1 되는걸로 봐서
정확히 말하자면 두 번째 문장은 ‘f(2x)=2f(x)가 성립하고 f(0)=1/2인 함수는 존재하지 않는다’를 증명한 셈...
사실 이게 더 어려울지도