랑데뷰 1D2K - 251130
게시글 주소: https://orbi.kr/00071037404
랑데뷰 1D2K-제1회.pdf
랑데뷰 1D2K 자료 제작중입니다.
1 day 2 killer
하루에 2개의 킬러문항을 다루는 자료입니다.
자료에 탑재되는 문항수는 4~6문항 정도입니다.
평가원 기출 킬러난이도의 문제와
그 문항의 완벽 분석을 위한 단계별로 제작된 자작문항 3~5문제
그리고 기출 킬러 문항보다 어렵게 제작된 마지막 변형 문항 1문제
자료에 포함되는 킬러 문제는 [첫 번째 문제]와 [마지막 문제]로 2문제입니다.
그래서 1D2K
제작되는 대로 꾸준히 업로드 하겠습니다. 작년 수능 문제들에 관한 제작은 반드시!!!
킬러가 아니더라도 중요한 문제들은 모두 제작할 계획입니다.
우선 작년 수능부터 [대부분 문제들이 미적분과 수2 문제가 될 예정입니다.]
작년 수능 미적분 30번 문제
[간단 설명]
(1) 조건(가)에서 b=2(pi)a 인 것을 알 수 있습니다. (sinx=x 의 해가 x=0뿐인 것을 알아야겠지요.)
(2) (1)을 만족시키는 a의 값은 1,3/2,2 로 제한됩니다.
(3) 조건(나)에서 a,b의 값을 확정할 수 있습니다.
(4) 이후 N축으로 풀어가면 쉽게 답을 확정할 수 있습니다. (N축 풀이는 랑데뷰수학카페(네이버) 자유 게시판에 올려뒀습니다. 예전에)
(5) N축을 이용하지 않을 때는
f'(x)=0의 해를 구한뒤
각각의 해에 대한 f''(x)의 부호로 극대인 값들을 구한 뒤 alpha1을 찾으면 됩니다.
(1) f(0)=0에서 b=n(pi) (n은 정수)
(2) f(pi)=2(pi)a+b에서 b=-2a(pi)
(3) (a,b)구하면 됨
(1) f'(x)=0의 해를 구하기 위해 g(x)=2x-sinx 라 하고 g(x)가 증가함수이고 g(4pi)=8pi이므로
g(x)의 값은 pi/2, 3pi/2, ....15pi/2 가 가능하고
(2) 그 중 f''(x)>0인 x를 찾으면 된다.
a=1/2, b=4pi 인 것을 구하고
step2 과정과 유사하게 풀어가면 되는데 좀 더 까다롭다.
풀이과정에서 1/2x+sinx=n(pi) 의 해는 x=2n(pi)인 것을 y=1/2x+sinx의 그래프를 이용해서 구할 수 있다.
a가 홀수일 때와 짝수일 때로 나눠서 풀어가야 한다.
f'(x)의 부호를 파악하기 위해 증감표를 이용한 곱함수의 부호를 파악하는것도 좋다.
조건(가)에서 (a,b)는 (0,0), (-1,1), (-2,2) 중 하나인 것을 구한다.
각 경우에서 (나)를 만족시키는 (a,b)를 구하고 계산 마무리
랑데뷰 집필진 [오세준 선생님]의 변형문제이다.
setp3 와 관련된 문제이고 조금만 비틀었을 뿐인데 난이도 훨씬 어려운 문제고 좋은 문제이다.
2K의 두 번째 문제이다!
올린 pdf자료에 빠른답까지 공개되어 있습니다.
풀이는 제공되지 않지만 자료를 다운 받아 풀어보고 위 간략 해설을 참고하면 풀릴거라 봅니다.
다음 자료의 주제 및 문항 정보는 [251128]이고 게시 예정일은 1월6일입니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
졸업해도 보러 가끔 와야겠다
-
음음..
-
커뮤에 있는 각종 또라이들 딱 한가지 유형 빼면 현실에서 하나도 안보임 있다해도...
-
부모님 지원 못받으니까 왜 그런지 깨닫게되네 비싸다는건 알았지만 그래도 무조건...
-
드셔야 할 분이 좀 보이네
-
하스 가고싶다 2
면접 잘 보고싶다..
-
시립대는 빨리 차는데 왜 성대 사과는 안참 적어도 300은 와야지!!!!!!!!
-
ㅇㅈ 0
하고싶은데 이제 사진이 없다 이래서 아싸 히키코모리란..
-
교대 정시 면접 1
교대생 분들,, 이번에 청주교대 지원했는데 면접을 어떻게 준비할지 막막하네요ㅠㅠ 팁 부탁드려요
-
님들 혹시... 16
제 나이 아시나요 안다 vs 모른다
-
2024 65577인데 재수하러 오늘부터 기숙갑니다 살아돌아올게요....올해는 포기없다
-
1. 지원학교 : 2. 지원학과 : 3. 모집인원 : 4. 해당 모집단위식 점수 :...
-
아님 모의지원처럼 정해진시간 업뎃인가요?
-
안 봐 1월은 좀 편하게 있을래