교육청 킬러스러운 수2 자작문제 투척
게시글 주소: https://orbi.kr/00071022612
실제 수능이라면 아마 14~15정도 난이도..
옛날 교육청 문제 풀다가 떠올라서 만들어봤습니다
도움이 되셨다면 좋아요+팔로우 부탁드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보통 2등급 나오고 운좋으면 1등급까지 나오는데 저는 효율적인 풀이법 이런거없고...
-
그냥 싫어.. 차라리 평생 친구여도 좋으니까 그 친구랑 사귀는게 아니면 솔로로...
-
김기현t 4점기생집 수분감처럼 옛날기출들 많나요
-
저는 대깨설이였는데 대가리 봉합당해서 근데 이왕 원서 썼으니까 쓴 사람들은 다 설대 가라..:
-
수업 교재 해설 직접 쓰는 사람 있나요? 최소한 3개년이나 아니면 수업하는...
-
슬슬 잘까 1
못 잘거 같긴한데
-
그냥 하염없이 서글퍼져
-
이번 수능 정법 사문 각각 3 5 나왔는데용 사문은 좀 못하는것 같아서 개념...

맞나요f(3)=18이던데 계산찐빠났을수도
정확합니다!!

m1(t)= 3(t + 2)² + a (t <= -2)
= a (-2 < t < 0)
= 3t² + a (t >= 0)
m2(t)
= 3t² + a (t <= 0)
= a (0 < t < 2)
= 3(t - 2)² + a (t >= 2)
g(t)
= 12t + 12 (t <= -2)
= -3t² (-2 < t <= 0)
= 3t² (0 < t < 2)
= 12t - 12 (t >= 2)
g'(t)
= 12 (t <= -2)
= -6t (-2 < t <= 0)
= 6t (0 < t < 2)
= 12 (t >= 2)
ㄱ. g(0) = 0 (O)
ㄴ. g'(t)가 연속 → g(t) 미분 가능 (O)
ㄷ. g(f(t)) = 12, f(t) = 2
& g(f(t)) = -12, f(t) = -2
→ f(t) = x³ - 3x, f(3) = 18 (X)
[정답] ③ ㄱ, ㄴ
Goat..
GOAT
저거 ㄷ선지 숙명여고인가 8학군 내신기출에서 본거같아요...ㄷㄷ

ㄷ 선지가 많이 좋네요ㄱ. t=0에서 m1=m2=a이므로 g(0)=0 (O)
ㄴ. 직선의 기울기가 12이고 경계지점인 t=-2, 2에서 모두 미분계수 12가 존재 (O)
ㄷ. a=-3, b=0 구해 f(x)에 넣으면 f(3)=27-9=18 (X)
감사합니다!