회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00070977110
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ
-
하루에 19시간은 걍 구라같은데 랭킹보니까
-
맞맞맞팔팔팔구구구
-
삼반수 가자! 1
실패하더라도 한번더봐야 미련이 안남을듯
-
아는 선생님이 없다
-
본가에서 이틀이상 있기가 너무 힘듦 무슨 유튜브 알고리즘에 특전사출신인 사람이...
-
나는 내가 게이라는 사실을 죽어도 못말할것 같음
-
잠깐 안들어오고 앱도 삭제했는데 드라마틱하게 공부시간이 느는건 없었음 생각해보니까...
-
절대 오르비 접속이 뜸해진 참에 도망가려는데 아님 ㅇㅇ 절대 오르비보다...
-
ㅍㅅㅌ 일반고 내신 2.3인데 모고는 지금까지 한번빼고 올 1이고 이번 3모 국수영...
-
그렇다면 공부를 열심히 해야겠지..0
-
일단 난 개념베스트 강좌는 발췌독으로 들음 그리고 CSAT 완강, DEEP 강의...
-
이번3모 화작80(화작 2틀) 미적1컷 영어3 탐구 1 3인데 탐구 3등급인건 아직...
-
졸업생인데 주소지 타지역에서 볼 수 있나요?
-
아예 전범위맞나요??
-
권위에 추가적인 어드벤티지가 없네 캬캬
-
시대컨 질문 1
엑셀 공통 ㄱㅊ음?
-
아마 없긴 할 것 같은데 찾으시면 ㄱㅅ.
-
영어 기출에 모르는 것부터 외워보세요 단어장을 따로 두면서 외우기 시작하면 분명...
-
잇올 쉬는시간도 참아보고 집에 와서도 참아볼게요 수학 2까지 올렸는데 여기서 더...
-
n제 추천 0
3모 공통1, 확통1틀인데 n제 볼텍스, 드릴, 4규, 펀더멘탈 n제 중에뭐가 좋을까요?
-
그날부터 운동시작할게
-
잇올은 무조건 올라인 신청만 되는거예요? 직접가서 신청 못함?
-
오늘 수능 국어 노베이스 친구에게 수능 국어를 잘 볼 수 있다는 희망을 심어주고 왔습니다 히히
-
는 옛날에 올린거 Max{3x, 2y}=5 Mid{3x, 2y}=3 Min{x,...
-
삶이판타지
-
뭐가 제 아이덴티티를 대표한다 생각하시나요?
-
뉴런언제해요 3
지금 수분감 반정도 했는데 뉴런이랑 병행해도 될까요 아니면 걍 수분감 1회독다하고...
-
올해 차영진 N제게임 어타 저만 좀 쉬운 거 같나요 0
공통은 무난했고 미적은 적분빼곤 괜찮았음 문제퀄은 근본적이면서도 낯설어서 다 좋은듯...
-
쉬울수도?
-
닉 추천받음 4
앙망
-
그냥 쉬지않고 쳐먹는거같은데
-
오르비 정도야 뭐
-
치킨 먹고 싶다 0
지금 먹으면 소화 안 될 듯 ㅜㅜ
-
외대만 까이는게 아니라 경희대도 이젠 뭐 동국,홍익대한테도 쳐발리는데 중건시동...
-
3모 때 미적 27번부터 4개 틀렸고 뒤에 2 3단원은 더 자신이 없어서 확통할까...
-
질문받음 7
없으면 자러감
-
이번 3모 수학이 작수보다 어렵다는 평이 많은데 이번3모가 실제 수능이었다면 등급컷 어느정도일까?
-
진짜 대체 왜 존재하는지 모르겠다
-
예전에 풀었을 때 한번 낚였었는데 또 낚임.. 아 백옥루 보면서 깨달은거구나 ..
-
군침이 피젯스피노 24
-
4덮까지 쉴까 8
비호감 게이지도 줄겠지 그러면 성적도 올리고오면 더 좋고
-
눈팅만 하다 글써봅니다 잘부탁드려요!
-
뭐지 수1은 이해원 시즌2로..? 샤인미 풀고 풀려 했는데
-
쌍사 0
쌍사 작년 기준으로 3등급이면 탐구 그냥 다른 거로 옮길까요..?ㅠㅠ
-
컨셉질 끝 4
좋은 밤 보내세용
-
김승리 커리탔는데 문학은 ㅈㄴ좋은데 비문학은 현장에서 못써먹겠음 메가대성 둘다있는데 ㅊㅊ좀
-
방송 보고싶다 1
돌아와 푸바오
-
11모 성적유출 사태 이후로 아예 5월에 내나 보네 한번만 그럴줄 알았는디
막대길이 이분의 루트2 아님?
짧은 막대의 길이 대 긴 막대의 길이가 1대 루트2이면 큰 상관은 없습니다
2분의 루트2라는 숫자보다 1과 루트2가 더욱 직관적이라서 저렇게 작성했습니다!
원순열 사라져요?
네 22개정에서 사라져요
개에반데
왠지 09들 대학 가는 해에는 서울대 면접에 원순열 염주순열이 나오지 않을까 싶네요 ㅋㅋㅋ
144?
오오 정답입니다!! 풀이과정 간단하게 공유가능하신가요 ?
작은 사각형 4개 수 합이 10, 11, 12, 13
각 변에 적힌 수의 합이 짝수가 되지 않기 위해서는 사각형 위에 짝수 2개, 홀수 2개가 있어야 하고 가능한 조합은 1234, 1236, 1245로 [3가지]
1234를 배치한다 가정하면 일단 1과 3을 마주보게 놓은 후 2와 4가 자리를 바꾸는 경우의 수 [2가지]
남은 56789 중에서 합 계산에서 제외되는 가운데 숫자가 홀수(5, 7, 9)여야 큰 사각형에 짝수 2개, 홀수 2개를 배치할 수 있으므로 경우의 수 [3가지]
1과 2 사이에 짝수 6 또는 8을 배치한다 가정 : 6을 배치한다 가정하면, 1과 6이 있는 변에 반드시 8을 배치해야 하고, 남은 7, 9는 자리 변경 가능 2 * 2 = 4가지
1과 2 사이에 홀수 7 또는 9를 배치한다 가정 : 7을 배치한다 가정하면, 1과 7이 있는 변에 반드시 9를 배치해야 하고, 남은 6, 8은 자리 변경 가능 2 * 2 = 4가지
이므로 큰 사각형에 숫자를 배치하는 방법 [8가지]
따라서 모든 경우의 수는 3 * 2 * 3 * 8 = 144가지
저는 이렇게 풀었습니다!
확통황 ㄷㄷ
정확하게 푸셨네요 굿굿
감사합니다 !!
확통은 별로 자신이 없었는데 정확히 풀었다니 다행이네요 ㅎㅎ
경우의 수 뿐만 아니라 합의 홀/짝에 대해 깊게 생각할 수 있어서 좋았습니다
풀면서 평가원에서 30번으로 원순열을 낸다면 이런 느낌이지 않을까 생각이 든 훌륭한 문제였습니다!