-
맞팔구 0
-
자러가요
-
파면한다 당시 녹화해놨던거 무한재생중 도파민 지리네
-
좋아하는 생각하기
-
한쪽은 비 맞지 않나 사이좋게 붙으면 괜찮을려나
-
난 윤석열에 어느정도 기대를 하긴 했음 비록 선거과정에 좀 이상한 짓을 많이...
-
인생망한거같다 0
고1때부터 정시선언하고 나댔다가 학교 다니면서 우울증,대인기피 심해지고 수능은...
-
지금이라도 늦지 않았다 영혼까지 끌어 부동산 올인해야하는 이유 3
오늘이 최저점임 이재명은 합니다
-
이짤아는사람 6
.
-
한창 엔저때는 ㄹㅇ 나라전체가 거대한 블랙프라이데이였는데
-
언제 올리는게 가장 많이볼까요 수특 레벨3 곱셈정리까지+확통 필수...
-
神戸
-
오르비 1
-
그냥 노가다죠? 애들 대부분은 다 맞췄더라구요
-
젼 기만자가 아니라 11
감자입니다
-
사실 얼굴 잘 못외워서 욕 많이먹음
-
정신의병
-
다뒤진 오르비에 장작 넣어주는 리치킹인듯
-
으흥~
-
딥피드 점령당함 2
너가갤주해라
-
+1을 해야겠어
-
저때 인설의 이상급에서 수능보던 사람 내가 아는 케이스만 2-30개는 됐었는데...
-
다들 자러 가라
-
아차! 내란견들에게 뻐큐하는 형식이햄이었어요!
-
꼭 약속 전날밤에 뭐가 터짐
-
엄
-
공팀지수가 4임 ㅋㅋ 내가 취직하기전에 마지막기회같은데
-
아 인생
-
자러가겠습미다.. 12
자러가라고하네요ㅠ 거역할수가읎다
-
벌써부터 보이는건 기분탓일까
-
입학이 곧 처단대상인 학과인데 ㅉㅉ
-
처음엔 나도 좀 예쁜 레어 멋진 레어 가지고 싶었어 4
연달아서 여섯번 물리니깐 그냥 폭주한거지 정작 웃긴 건 물렸던 레어는 다 팔렸다는 거임
-
학교인증만 하고 탈퇴해야지
-
요즘으로 치면 서바 이감 기깔나게 푸는거로 어맛 저 낭군 멋져 이ㅈ랄하는거 아님?
-
개콘 공채 소속이냐? 19
둘이서 뭐하노 ㅋㅋㅋㅋㅋ 일단 이젠진짜 점마는 공연성은 성립해도 특정성 부터가...
-
신청 안되죠??ㅠ 8월에 고졸따는데 6평은 학원에서도 못 보는 거 맞나요? 혹시...
-
오늘 독재에서 귀차나서 안외운 영어단어..
-
레몬멜론쿠키레몬멜론쿠키 쿠키!
-
내년 현역은 잠재적 재수때문에 확통을 더 할거같다
-
탈릅해야지 4
ㅇㅇ
-
레어 구매 꿀팁 4
지금껏 스크롤로 찾았던 레어를 찾았던 지금까지의 내가 한심해질 정도의 좋은 방법이라...
-
걍 학번당 한두명씩 있는 부류임… ptsd온다 잘못건든거 같다
-
설마 5
수험생인데 잠안자고 오르비에서 리젠 머임 ㅋㅋ 이러고 있는사람은 없겠죠..
-
이제안옴? 4
살살팼어야지 가버렸잖아...
-
대 온 힐 조 그저 GOAT
-
현역 3모 수학 84고 공통은 기출다해서 n제 맛볼려하는데 추천좀
-
나도 글을 쓰면 댓글이 우수수 달리는 경험을 해보고싶구나

정답 69
헉 진짠가이건 25

풀이과정 있어야대요정답 888484
피보나치 수열 일반항 대입하면 될 같은데
이러면 많이 귀찮아지겠네요;;

그쳐...다른 풀이가 있습니다 흐흐이게 뭐야...
어우 너무 노가다라 포기 윗분 말대로 피보나치 일반항으로 했는데 이거말고 다른 풀이가 있어요?
망원급수로 b_n 일반항 구하기?
근데 해보기 귀찮음
팩트는 이거 풀 시간에 프로세카 한 판 더 하는게 이득이라는 거임...
몇분째 잡고 있는데 힌트라도 안될까요..
망원급수 삘이 강하게 오긴 하는데 하 접근이 안되네요..
245
일반항은 이미 잘 알려져 있으니 무지성 대입하고 계산하면 끝
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ헉...
ㅋㅋㅋㅋ
맞나요
계산실수했을까봐
실제로 전 모고 95점 아주 많이 받아본 인간(?)이에요
96 94 아니고 95
글을 너무 늦게 봤습니다. 일단 초견풀이는 이건데 나머지 정리로도 풀 수 있을 것 같아 고민해 보겠습니다.
a[m] : 피보나치 수열
a[1] = a[2] = 1, a[m] + a[m+1] = a[m+2]
b[m] = a[1]/m + a[2]/m² + a[3]/m³ + a[4]/m⁴ + a[5]/m⁵ + ...
= a[1]/m + a[2]/m² + (a[1] + a[2])/m³ + (a[2] + a[3])/m⁴ + (a[3] + a[4])/m⁵ + ...
= 1/m + (1/m² + 1/m)b[m]
--> m²b[m] = m + (m + 1)b[m],
b[m] = m/(m² - m - 1),
mb[m+1] = m(m + 1)/(m² + m - 1)
1/mb[m+1] = 1 - 1/m(m + 1)
= 1 - (1/m - 1/(m+1))
Σ(m=1~7) 40/mb[m+1]
= 40 Σ(m=1~7) {1 - (1/m - 1/(m+1)}
= 40(7 - 7/8) = 245
이제 봤는데 풀이가 윗댓이랑 거의 같네요
무한등비급수 공식 유도할 때처럼 무한합 식 전개한 다음에 주어진 점화식을 가지고 b[m]이 반복되는 부분을 파악해서 b[m]의 일반항을 구하는 게 포인트인 것 같습니다