이거풀어보새요
게시글 주소: https://orbi.kr/00070884019


난 너무 찝찝하게풂.
개인적으로 뭐처럼 보이는거 직관으로 미리 찍어놓고 그게되는이유를 논리 끼워맞춰서 풀어내는거보다
정공법으로 논리적용해서 정방향으로 뚫어버리는걸 좋아하는데
그러질못함
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고3 현역 때 너무 놀기만 놀고 공부를 안 해서 올해 수능이 65547이...
-
나도뱃지 0
-
온갖 고오수들을 끌어들이는 마성의 매력이 있음 온갖 뱃지, 붉은색 보라색 눈들이 죄다 들이닥침
-
엽떡 시켜먹을까 15
-
ㅎㅎ 탈릅은 안할거임뇨
-
오히려 불확실하니까 기회의 땅 아닌가
-
언매vs화작 2
국어 선택과목으로 언매할까요 화작할까요? 추천좀
-
전자 가면 통계, 후자 가면 전전컴 갈 거예요 취업까지 생각했을 때 뭐가 낫다고...
-
남자 실격 8
여자합격~하와와 여고생쟝(고4)인 거시와요~
-
그래야 원래 노베였던 연기 ㄱㄴ 네 대박적 상승인척 ㄱㄴ
-
ㅅㅂ 인싸들 4
친구 없다면서 연말 저녁이니까 다 놀러나갔노 글 리젠이랑 조회수 속도 봐라....
성관계요?
문제풀어보셈
화질 에바
다시올림요
32 ?
정공법 ㄱㄴ
ㄱㅁ
설명의 편의를 위해 e^(ax²+bx+c)=g(x)라 하겠음
f(x)는 (가)에 의해 (2, 0) 점대칭
(나)에 의해, 2|f'(x)|≤f'(8)-f'(0)
x에 0과 8을 대입하면 f'(0)≤0, f'(8)≥0
부호를 감안해 절댓값을 씌우면
2|f'(x)|≤|f'(0)|+|f'(8)|
따라서 |f'(0)|=|f'(8)|이며 이는 |f'(x)|의 최댓값임
f'(0)은 최솟값, f'(8)=f'(-4)는 최댓값임
g'(x)=(2ax+b)e^(ax²+bx+c)
g''(x)=(4a²x²+4abx+2a+b²)e^(ax²+bx+c)
f'(-4)가 f'(x)의 최댓값이므로
g'(-4)는 g'(x)의 극댓값, g''(-4)=0이며
g''(x)는 x=-4 부근에서 +→-로 부호가 바뀜
f(x)의 x=0에서의 좌미분계수가 g'(0)가 같으며
f'(0)이 존재하므로 f'(0)=g'(0)
따라서 g'(-4)+g'(0)=0
g'(x)는 x=-4에서'만' 최댓값을 갖고, 점대칭함수이므로 g'(-4)+g'(x)=0을 만족하는 x는 하나뿐임
이를 만족하는 x가 0이므로
따라서 g'(x)는 (-2, 0)에서 점대칭, -b/2a=-2
g''(-4)=0과 연립하면 a=-1/8, b=-1/2
f(0)=e^c, f'(0)=-e^c/2
f(2)=0이므로 f'(0)이 f'(x)의 최솟값임에 위배되지 않으면서 f(2)=0이려면 f(x)는 0~2에서 1차함수임
정적분값을 이용해 c를 구하면 c=2
따라서 c/ab=32
사진을 찍을 수 없고 패드나 노트처럼 필기가 용이하지도 않아서 부득이하게 글로 풀어썼음
정성추