i의 취미생활 님이 만드신 모의고사 1회 손풀이(+빠진문제)
게시글 주소: https://orbi.kr/00070852846
자작 수학 모의고사 손풀이.pdf
글씨가 더러울 수 있슴니다.. ㅋㅋ 현역분이 만드신거라고 믿기 힘들 정도로 퀄리티가 좋으니 꼭 풀어보세여
https://orbi.kr/00070765146/%ED%98%84%EC%97%AD(06)%EC%9D%B4%20%EB%A7%8C%EB%93%A0%20%EC%88%98%ED%95%99%20%EB%AA%A8%EC%9D%98%EA%B3%A0%EC%82%AC (1회)
https://orbi.kr/00070800129/%EB%A9%B0%EC%B9%A0%20%EC%A0%84%EC%97%90%20%EC%97%85%EB%A1%9C%EB%93%9C%20%ED%96%88%EB%8D%98%20%EB%AA%A8%EC%9D%98%EA%B3%A0%EC%82%AC (빠진문제)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
망치들고 찾아감
-
취미로 방송해볼까 나도 코 하나로는 캐인한테 안지는데
-
물리 하세요~ 4
재미써요~
-
순서대로 보시면 댑니다 1. 수강후기에 이*건이라는 사람이 김범준 속마음 분석...
-
하늬대가고싶노 3
노
-
저 요리를 먹을 수 있다면 5만원 지불 가능
-
누구야
-
씽어쏭 0
난쥬카이노 요루오 스고시탓테 에라레누요 아이세테루오 나라베테미테~
-
상처받아서 자러감
-
그 당시 철 모르고 행했다 하더라도 도를 넘어서는 거는 왠만한 친구들 뇌리에서 쉽게...
-
약간의블핑과 여자친구
-
팔로우 받습니다 3
맞팔은 안해드립니다
-
급성 철 중독으로 사망할수도 있음
-
110530569007 신한 1원만 줍셔
-
작수 끝나고 대체적으로 1컷 예상이 42-41이었고 44 부르는 새끼 있으면 때려...
-
라떼는 아이민 앞자리가 7 8 9였는데
-
님드라 나 언매 4
하루에 평가원 한세트후 분석 교사경 부족한부분 10문제씩 꾸준히하고 있는데 부족한가...
-
확통런 기하런때메 미쳐날뛰는거 아님? 진짜 매년 기조가 바뀌니까 너무 공부하기가 어렵네
-
ㅇㅇ 보내주셈
-
저는 현재 지거국 컴공 2학년을 마치고 육군에 복무 중입니다. 제가 생각하기에는...
-
우리한테 피해준 건 아닌데 당사자 선에서 잘 마무리 해야죠 사람 됨됨이를 떠나서...
-
그런건가요
-
줴드궤줴~(제발!!!)
-
지금까지 한 100명 번따함 연락된건 20명 이성적 쌍방호감까지 간건 2명 번따가...
-
010.......
-
어떻게 생각하시나용? 확통 시작한지 3주됐고 공통이 완벽한 느낌은 안들어요
-
심심하면 거세요 홍준표 전화번호임
-
무슨 행동을 할 때 어떤 일이 일어날지는 생각해봐요 1
근데 그게 처음부터 되는 사람은 없어요 한 번 어디에서든 크게 디여봐야한다고...
-
생각안하면 오이카와처럼 저격을먹는수가있어요~
-
예스 아이 엠 0
네 저는 M입니다
-
손이 안간다
-
팜하니님은 조속히 사과문을 개제하고 복귀허시기 바랍니다 근데 사과문 올리고 반응하면...
-
0.75십만 3
-
못떠나겠어요
-
나 따인적있음 1
고딩때 친구들한테 대학을 따임 ㅏ.
-
번호 따 8
서 주세요
-
기다리고 있어요
-
독서 관련해서요 일단 문풀-채점-지문 문단간 어떻게든 주제 살려서 읽기-글에 숨은...
-
삼반수... 1
재수해서 강남대 재학중입니다. 현역:55444(사탐) 재수:43443(사탐) 이...
-
번따메타노 4
자야겠다
-
왜클릭? 추신:ㅁㄱㅁㄱ님 글을 보고 남에게 욕먹는 것을 무서워하지 않기로 마음먹었어요
-
이거 무섭네 2
왜 볼드체로 쓰니...
-
무슨 의미임?
-
아 오르비재밋다 2
그래 이맛에 오르비하는거지 난 여기가 맞는 위치인듯 ㅋㅋㅋ
-
시간이들겠지 예이에 시간이들겠지
-
최고차 1인 삼차 fx 그것의 변곡점을 지나는 일차 gx 변곡점이 1이면 f-g=...
-
그래서 안입고다님
-
뭔가 ㅈ된 삘이 오는데 관성으로 계속 수학만 하고있다...
대단하시네요. 빠진 문제까지 하면 50문제인데.. 그걸 다 해설해주셨군요. 처음 문제를 제작하면서 고민한 풀이보다 더욱 깔끔하고 좋은 풀이도 많이 보이네요.(사실 대부분이라는 건 안 비밀) 가끔 이런 풀이를 보면 정말 수학 잘하는 분들께 벽을 느낀답니다... 그런데 21번의 경우에는 조금 더 쉬운 풀이도 있습니다. 이는 f(x)그래프를 그려보면 알 수 있는데요. n이 짝수인 경우에 0<x<1구간과 1<x<2구간이 서로 뒤집힌 형태로 나타나있고 적분구간이 2씩 움직이기 때문에 상수함수로 생각하고 풀어도 문제가 없습니다. 제 모의고사를 풀어주신 것만으로도 정말 감사한데 풀이까지 직접 손으로 써서 만들어 주시다니 제가 몸둘바를 모르겠습니다. 감사합니다. 좋은 밤 되세요~
오!! 맞네요 감사합니당 좋은 문제 만들어주셔서 감사해요
아유 별 말씀을요. 요즘 날씨가 조금씩 쌀쌀해져 가는 것 같던데 감기 조심하시고 잘 주무세요.