-
이미지 써드림 41
이라고 하면 예전엔 진짜 정성껏 써줬는데 요즘은 누가 누군지도 모르겠고 특징도 잘...
-
안자는 오르비언들 25
출석하세요
-
안녕 15
너무 오랜만이당!
-
님들 뭐배워보고 싶으심 19
취업 돈 이런거 빼고 그냥 순수하게 자기가 배워보고 싶은 학과 참고로 전 전기공학부입니다.
-
선착순 2명 13
나한테 100덕
-
이미지 써드림 13
선착 1명
-
왜냐면 베라 4000원 할인 쿠폰 한 달에 한 개씩 생기거든 뭐로 먹을까?
-
요 며칠간 중독된사람마냥 몇개를 푼건지 모르겠네 이제 좀 끊어야지 이번엔 과탐 실모 양치기 간다
-
글쓰고 답글 잘 안쓰는거같네 요새 나 할말만 하고 이거 너무 이기적인거아닌가
-
이제 진짜 자야할듯 11
오르비도 줄여야할듯 이건 진짜 아니야
-
영감이떠올랐다 11
귀찮다
-
그는 나에게 일말의 관심조차 주지 않는다.
-
2시네 11
자야지
-
사랑하는 오르비언들 10
좋은 밤이 되셈
-
오늘 저녁 맞히면 만덕 16
힌트:파스타인데 앞에 4글자가 붙음
-
자야지 9
ㅅㄱ
출처가ㅇㄷ죠
커뮤에서 예에에에에에에전에 답변해준 문제라 출처는 모름뇨
수능전이었으면 도전했을텐데 늙은소가 돼버림
야해여..
..?
?
최고난도 도전 문항이라는데요
겁주기임 ㅇㅇ

아헉
432
님도혹시 같다고두고 이등변 찍었나여
네
정답~
ㄱㄷ
진짜 정병훈쌤이 낸 거 같이 생김
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
이거 문제 어디건가요
얼른 사려고요
멀라여~
음 3대4대5가보임
어캐암뇨
그럼 432네
근가 나도 문제 까먹어버림 지금 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
432?
잠만 답이 내가 기억하는거랑 다른디
특수로 상황 찍음 ㅋㅋ 아마 아닐듯
여튼 정답 예이~

이거지캬
뇌섹남…반해써요.
뭣
어어려운데
아 다섯번째 줄과 그 이하 A와 B는 각 C가 최대일 때의 A와 B입니다 그걸 안적었네요
ㄷㄷ 고수
글고 첫번째줄 공식도 원랜 증명하고 써야 하는데 그냥 익숙하길래 썼어요
덧셈정리가지고 유도하세요
이 풀이 보니까 젠센부등식으로도 될 거 같은데요
젠센으로 A=B 바로 나오네요 ㄷㄷ
논리는 거의 같은 듯요
뿡댕이님이랑 나머지 논리 다 똑같고, Sin함수는 오목함수이므로 (0부터 pi까지)
젠센 부등식에 의해 Sin(A+B/2)≥(SinA+SinB)/2≥3/5이고 등호 성립해야하니까,
A=B, Sin(A+B/2)=3/5

사실상 같은 풀이라 ㅋㅋㄱㅁ
오목성으로 푸는게 의도깅햇음
ㅇㅎ
니 왜 똑똑하냐
출제자의 의도를 이제 알았군요
GOAT
sinA = a/2R, sinB = b/2R
→ a + b = 12/5R > 48, R > 20
(R: △ABC의 외접원의 반지름)
각 C가 최대이면 cosC가 최소
b = 12/5R - a 이므로
cosC = (a² + (12/5 R - a)² - 48²)/2a(12/5 R - a)
= (2a(a - 12/5 R) + 144/25 R² - 48²)/2a(12/5 R - a)
= (144/25 R² - 48²)/2a(12/5 R - a) - 1
a(12/5R - a)가 a = 6/5R일때 최대이므로
어떤 R에 대하여 a = b = 6/5 R일 경우
cosC = -800/R² + 1으로 최소
이때 sinA = sinB = 3/5, c = 48이므로
a = b = 30, R = 25, △ABC = abc/4R = 432
원래는 삼각함수 덧셈정리 써먹으려다 그냥 수1 범위 내에서 풀어봄
굳~
문제 자체는 그냥 삼각형 ABC가 이등변삼각형일 때 각 C가 최대가 되는 걸 보이기만 하면 답이 금방 나와서 생각보다는 할만한 거 같음
근데! 제 글에 해당 문제에 대한 재밋는 풀이! 올려놧어요~