[수학] 조건해석을 쉽게 하는 법과 실력을 키우는 방법 +강좌소개
게시글 주소: https://orbi.kr/00070718244
안녕하세요
오르비 수학강사 이대은입니다.
오늘 글은
저번글(https://orbi.kr/00070555164)에서 약속드린
수학에서 조건해석을 쉽게 하는 법에
대하여 적어보겠습니다.
제가 수업할 때 강조하는 부분 중 한 부분인데
글로 잘 전달이 될지 모르겠지만
꼭 한 번 이해했으면 하는 내용이니
꼼꼼하게 읽어주세요!
한 줄 요약 먼저 하고 시작해보면
수학에서 조건해석을 잘 하려면
주어진 조건과 동일한 의미를 갖지만 표현이 다른 조건을 떠올리는 능력
이 반드시 필요합니다.
이 글에서 앞으로
의미는 같지만 표현이 다른 조건을
동치조건
이라고 하겠습니다.
예시를 통해 같이 이해해봅시다.
* 출처: 2022년 3월 공통 21번입니다.
이 문제에 대한 자세한 설명은 생략하고
간략하게 오늘 할 주제에 대해서만 설명하겠습니다.
우선 이 문제에서 주어진 조건은 다음 과 같습니다.
위 조건을 동치조건으로 바꾸면 다음과 같습니다.
특히 2.의 경우 다시 한 번 표현을 바꿔서
동치조건을 찾아보면
가 됩니다.
이렇게 되면
복잡해 보이던 문제가
간단한 지수방정식 실근의 개수와 관련된 문항으로
바뀌게 되고 풀이법도 당연히
해당 유형에 대한 풀이법으로 이어지게 됩니다.
주로 동치조건은
수식을 다른 수식으로 표현하는 경우도 있지만
대부분은
국어적 표현과 수학적 표현을 서로 자유롭게 바꾸기가
정말 중요합니다.
영어 문제를 풀 때
지문을 읽고 해석해서 한국어로 바꾸는 것처럼
수학도 조건을 읽고 조건에 대한 수학적 표현이 무엇인가를
떠올리는 것이 가장 중요합니다.
이렇게 주어진 조건에 대하여
동일한 의미를 갖지만 다른 표현인 조건으로 바꾸면
문제가 익숙한 기본유형으로 바뀌게 됩니다.
물론 위의 예시처럼
동치조건을 찾았다고 바로
한 문제가 한 기본유형으로 바뀌는 것은 아닙니다.
실제로 준킬러 이상의 문제에선
조건마다 기본유형이 존재할 가능성이 매우 높고
여러 유형이 합쳐져서 한 문제가 되는 경우가 대부분입니다.
그럼에도 한 조건에 대한 한 기본유형을 찾는다면
해당 기본유형에서 이어지는 풀이법이
조건을 해석하는 방식과는 무조건 일치합니다.
그렇다면
이렇게 조건을 보고 동치조건을 떠올려서
기본유형을 찾는 훈련을 어떻게 하느냐?
1. 최대한 섬세하게 유형을 나눠서 풀이법까지 알고있다.
2. 문제에 주어진 조건을 보고 동치조건 파악하기.
이렇게 두 단계가 반드시 우선적으로 학습되어야 합니다.
이런 부분은 절대 문제만 많이 푼다고 해서
자연스럽게 생기는 능력이 아닙니다.
올바른 방법으로 열심히 공부를 해야
형성되는 능력이고,
이것만 되면 수학은 극복 불가능한 과목이 절대 아닙니다.
--------------------------------------------------
이후부터 강의홍보입니다.
수학수업에 확신이 아직 없는 학생들은 한 번만 읽어보세요.
후회하지 않으실 겁니다.
앞서 말씀드린 두 단계를
제가 최대한 효율적이고 강제적으로 학습시켜 드리는 강좌를
12/28(공통), 12/30(미적분)에 개강하여 진행합니다.
제가 전에 칼럼(https://orbi.kr/00070361400)에서 말했지만
상위권을 위한 수업과 상위권이 되기 위한 수업은 완전히 다릅니다.
라는 슬로건을 갖고 강의를 매년 진행합니다.
실제로 처음 등록할 때
2, 3, 4등급이 아니면 받지 않고
보통의 단과처럼 쫓아올 수 있는 학생을 대상으로 강의를 진행하지 않고
2, 3, 4등급에만 포커스를 두고
해당 등급대의 학생들이 필요한 내용만을 전달합니다.
특히 시험을 볼 때마다 받는 점수의 편차가 큰 학생들이
가장 많은 도움이 될 수업입니다.
상위권 학생들은 어떤 것을 알려주더라도
알아서 본인만의 도구로 습득을 아주 잘합니다.
그렇지만 상위권이 아닌 경우
그렇지 못한 경우가 더 많습니다.
쉽게 말해서 제가 전에 적은 글(https://orbi.kr/00070555164)에서
말씀드린 것처럼 과연 한 문제를 풀고
단순히 풀이를 이해하고 넘기는 것이 아니라
이렇게까지 내용정리를 해서
강제적으로 어떤 상황엔 어떤 풀이가 이어지는지를
이해 및 암기시키고
동일한 조건이 문제에 주어지면 풀이가 반사적으로 떠오르도록하는
것이 중요합니다.
성적을 향상시키겠다는 의지는 있지만
어려운 내용의 수업을 버티다 보면 실력이 늘겠지라는
판단으로 시간을 보내다가 6월에 평가원을 보고
무언가 잘못됐다는 느낌을 갖는 경우가 정말 많습니다.
수학공부는
누군가가 전달하는 어려운 문제나 화려한 풀이를 이해하는 것이 아닌
해석력을 길러서 본인 스스로의 풀이 떠올리는 훈련을 하는 것입니다.
만약 본인이 화려한 풀이나 고난도 문항에 대한 경험이 아니라
기본 피지컬을 키워야 하는 단계라면
쉬운 결정이 아니겠지만
저를 믿고 쫓아오세요.
실제로 많은 학생들이 저와 수업을 진행하며
이런 방식의 수학공부 방법을 진작에 알았다면이라는 말을
정말 많이 합니다.
아래에 영상이나 이미지 커리큘럼 보시면
어떤 관리와 방식으로 여러분들의 성적향상을
도와드릴지 적어놨으니 차분히 읽어보시고 결정해보세요. :D
저와의 수업으로 만남이 여러분의 수험생활의 변곡점이 되도록
최선을 다해 준비해두겠습니다.
그럼 수업에서 만납시다!
참고로 물리적으로 거리가 먼 학생들을 위해
인강처럼 영상으로 수강은 하되,
관리와 과제는 현장과 동일하게 진행해드리는 시스템도 있으니
관심 부탁드려요!
* 이대은T 영상커리큘럼 안내입니다.
* 이대은T 이미지커리큘럼 인내입니다.
다음 글은
전에 올린 글(https://orbi.kr/00070674366)에서 약속한
25수능 도구정리 자료배포로 돌아올테니
필요하신 분들은 팔로우, 좋아요 해두시고 최대한 빠르게 받아가세요!
오늘의 글은 여기까지입니다!
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
BEST 수강후기
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁, 분당
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 무물 받아여 14
2206 2209 현장 응시 100 23,25 수능 현장 응시 공통 만점...
-
새벽여캐투척 3
그건바로결속밴드
-
여르비 질문바다요~ 36
예이예
-
그럼 연고라인+서성한 중상라인+중경시라인+중대높~서성한낮 라인까지 대통합 ㄱㄴ
-
성대 가군 0
지금 다 텅텅 빈거같은데 원서접수때는 다 들어오겠죠? 경쟁률이 작년 반도 못미치는거 많은거같은데
-
원래 수능에서 문법 배제 떡밥의 역사는 오래됐음 단순히 수험생들 떡밥이 아니라,...
-
나도 거기서만 4점 나갔고 작수 김원전 대신 드갔으면 언매 1컷 81~82도 가능하지 않았을까
-
D-2 11
우히히 아직 실감이 안 난다
-
비문학 지문 지문 분석이라는걸 정확히 어떻게 하는건지 잘 모르겠어요. 예를 들어...
-
저만 25수능 미적 27 어렵다는 생각 안 했나요 13
그냥 킬캠 27번이랑 비슷했던거같은데 계산만 많고
-
성대 계열제 4칸 써봐도 가능성 있는 걸까요..? 반수한거라 안정적인 카드는 많이...
-
그논리면 그 대학 생활하는것도 올리면 안되고 돈쓰는것도 올리면 안되고 여행가는것도...
-
언제까지 싸울래 0
실증 안되는거 가지고 키배뜨는거 만큼 비생산적인게 없음 반박 (안)받음
-
약수를 바라보는 입장에서 사탐런하기도 애매하고 2과목을 하자니 무휴반할거라 너무...
-
인스타에도 얼굴 사진 보정해서 올리잖아 학벌도 보정해서 올리면 안 됨?
-
강민철 현강 0
강민철T 현강에서 정규시간 그 이상 하시는 경우가 많나요??
-
슬슬 공부를 시작해볼까용
-
어릴수록 뭐랄까.. 외국으로부터 오는 새롭고 설레는 감정이 더 커서 좋은듯.. 뻥...
-
어문이어도 중앙대 가서 복전할 정도로 중앙대랑 외대 사이에 간격이 유의미한지 궁금합니다
-
왜 그성적들 들고 서성한 낮과에서 날 눈물흘리게해!
항상 좋은 칼럼 써주셔서 감사합니다
엇,, 제 새로고침보다 댓글이 빠르네요 ㅎㅎ
매번 좋게 반응해주셔서 감사합니다.
표현이 이상하지만 저번 저격글도 감사드려요 ㅋㅋ!! :D
가에서의 a의 자취와 나에서의 함수의 역함수의 자취가 접하고 접점이 a,b다 정도로 해석하면 깔끔하네요