함수추론 자작문제
게시글 주소: https://orbi.kr/00070662243
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
부럽다
-
ㄹㅇ 안 오는거 같으니까 진짜 잔다 잔다 잔다
-
그때보다 실력이 늘었네
-
ㅅㅂ 20일만에 거의 한바퀴 돌려야겠네 ㅈ됐다
-
1510261 1
2113790 2083557 2164066
-
오 뭔가 수렴됨 2
고2때까지만해도 내신보다 모고가 더 잘나와서 (내신 국수44 모고32등급) 정시로...
-
오랜만에 해서 까먹었는데 이게 p2구할때 10분의 7이아니라 왜 8분의 7곱하는건가여..
-
수학질문 4
모의고사를 보면 항상 노찍맞 3,4점 한문제 차이로 2등급 안되는 3등급인데요.....
-
국어 수학(미적또는 기하) 영어 과탐(1) 3합 5가 최대목표이고, 3합 6은 꼭...
-
맞팔구 3
-
언니-동생이 동문이 되어버리는 아주 유링게슝한 상황이 되네요.
-
허구한 날 쓸데없는 걸로 싸우는 것보다는 낫네요
-
으악
-
의도적이지 않게 0
250630 복습하게 됐으면 ㄱㅊ ㅋㅋ
-
언미 고정1 영어 1~2진동인 무휴반엔수생인데요 나이가 많아서 올해 못 가면...
-
공뷰 2
지금부터 두시까지 할건데 무슨 과목 할까여 ㅎㅎ 힘들당
-
수행 대충 끝 0
머시기 설문조사 만들어서 뿌려버림 후련띠
-
으악우가 누고
-
06은 아니죠? 05인가 04인가
-
으악우 2
왤케 많이 특정당함ㅋㅋㅋㅋㅋㅋㅋㅋ 불쌍해
-
우스운사람맞음.. 그러니까놀아줘..
-
저만 미치도록 난해하고 적응 못하는건가요…내용 정리가 안됨;;;;;;;ㅜㅜㅜ...
-
오르비 안녕히주무세요! 10
오르비 잘자요~
-
진짜 모름
-
생윤 이지영 출제자의눈 13~31강 (강의O) 하루종일 19강 내용을 필기하느라...
-
안오나봄 2
자고옴 만약 먼 일이 일어나면 누가 다 캡쳐해놔주셈 글고 내가 깻을 때 싹 모아서 올려주셈
-
https://orbi.kr/00073082844/ 교수님들은 이런 실수 안 한다
-
오르비에서 엉덩이주사 맞았다고 남들한테 말할 줄은 상상도 못했지 갑자기 현타오네
-
화작 미적 정법 사문기준으로 수학97이면 다른과목은 어느정도 나와야 될까요?
-
잇올기숙 0
잇올기숙 다니는사람잇냐 잇으면 댓좀 물어보고싶은거잇
-
왜 지금 아프지 앉을때마다 따갑네
-
가끔 헷갈림
-
사실 당사자 안 등장하면 걍 자러갈꺼
-
사건 전개의 인과성에 입각해서 읽는다가 무슨 말인지 알려면 4
이 문제를 아래처럼 분석할 수 있도록 읽는게 사건 전개의 인과성에 기반해 읽는거임...
-
오늘 산 문제집 3
드릴 수1 드릴 수2 이해원 미적 시놉시스 시즌1 시놉시스 시즌2 트레일러 김승모...
-
저번주에 머리자르러 갔는데 고등학생 소리 듣고옴
-
닉변완. 15
닉네임을압축한다
-
가성비좋게 토목공학과 가서 러시아감 ㅇ
-
언매: 4문제정도는 쳐다도 안보고 나머지 몰빵해서 최대한 다맞추기 기하: 한두문제...
-
으악우씨 아쉽네 2
같은 통통이로써 응원했는데
-
ㅇㅋ?
-
심장을 바치겠습니다 크아아아ㅏㄱ
-
최저맞추려고하는데 영어랑 수학은 해야해서요, 셋중에 등급맞기 쉬운과목 무엇인가요?...
-
한 고정 백분위 98 미만은 그럴 듯 작수 긴장 존나하니깐 뇌가ㅅㅂ 글읽기를 거부함
-
기숙 고민 4
담주에 기숙들어갈건데 머리 미는게 좋나요
-
내일부터는 계획표도 같이
-
퇴 9
근
-
둘다 풀어보신 분들 갠적으로 더 만족도 높은 n제는 뭐였나요?
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요

워낙 좋아하다보니 그런 것 같습니다 :)문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요

좋은 문제 감사합니다아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234