[신성고] 수학2 기말고사 손풀이 + 해설 영상
게시글 주소: https://orbi.kr/00070236092
안녕하세요. 수학의 판도를 바꾸는 Math Changer 어수강 박사 (과천 "어수강 수학" 원장)입니다. 오늘은
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 하도록 하겠습니다.
PS. 신성고 학생이 아니더라도 시험 준비에 크게 도움이 될거라 생각합니다.
1 페이지는 무척 쉬우므로 해설은 생략합니다.
2 페이지도 무척 쉽지만 코멘트 하나만 할게요!
[6번 문항] 평균값 정리가 상당히 유용한 정리임에도 이와 같이 무의미한 형태로 출제되는 것이 상당히 안타깝습니다. ㅠ_ㅠ
이제 3 페이지를 볼까요?
[10번 문항] 미지수가 2개 (a와 f(x)의 상수항)이므로 등식을 2개 이상 얻어내면 되겠죠? 주어진 식의 양변에 x=0을 대입, 주어진 식의 우변을 적분한 후에 x=a, x=1을 대입하면 계산 문제가 될 것 같네요!
위와 같은 풀이도 당연히 가능하지만, 조금 더 계산이 간단하면 좋겠죠?
저는 함수의 그래프를 이용하여 방정식 f(x)=f(a)에서 x=a가 삼중근임을 알아낸 뒤, 인수정리를 이용하여 가볍게 풀었습니다. 시험에서 이와 같은 풀이를 찾아낼 수 있다면, 시간 절약은 물론 실수할 가능성도 크게 낮출 수 있겠죠?
고등수학에서는 복잡한 것을 그대로 계산하는 것은 학습목표가 아니므로 "복잡한 것을 간단히"하는 도구 또는 아이디어에 초점을 맞추고 공부할 것을 강력하게 권장합니다!
[11번 문항] [12번 문항] 문제에 주어진 조건에서 원하는 것을 얻어내기 위해 한 단계 한 단계 차근차근 풀면 그리 어렵지 않습니다. (feat. 삼단논법!) 이때, 문제의 포인트는 미지수가 a, b 두 개인데, 등식이 하나라는 것이겠죠?
미지수의 개수를 줄이거나 식의 수를 늘려야 하는 상황입니다! 저희 수업에서는 이런 상황에 대처할 수 있는 방법을 매 시간 강조하고 있는데요. 이 문제의 경우, 모든 항의 차수가 같으므로 양변을 하나의 문자로 나누면! 분수식(a/b 또는 b/a)을 하나의 문자로 볼 수 있게 됩니다!
그 뒤론 쉽게 풀 수 있겠죠?
이제 4 페이지를 볼까요?
[13번 문항] 주어진 등식으로부터 f(x)가 삼차식임을 알아낼 수 있다면, f(x)의 계수를 문자로 두고 풀면 되겠죠? 하지만 연속함수 f(x)에 대하여 f(x+1)-f(x)가 이차식이라고 해서 f(x)가 삼차식이라는 것을 배운 적이 없기 때문에 주의해야 합니다. 서술형이라면 크게 감점되겠죠?
구간의 길이가 1/2, 1인 정적분 값을 이용해서, 삼단논법으로 주어진 것에서부터 구하는 것으로 차근차근 나아가면 쉽게 풀 수 있습니다! 자세한 풀이는 해설 영상을 참고 해주세요 :)
[14번 문항] 원의 넓이를 시각 t에 대한 식으로 나타내면 되겠죠? :)
[16번 문항] 직접 계산은 너무 복잡하네요! 저는 근과 계수의 관계를 이용해서 간단히 풀었습니다 :)
마지막으로 5 페이지입니다.
[17번 문항] 교점의 좌표를 문자로 놓고 식을 세우면 되겠죠?
[18번 문항] 그래프의 대칭성 & 인수정리를 이용하면 간단히 풀 수 있겠네요! [11번], [12번] 문항과 마찬가지로 a, b에 대한 4차식에서 모든 항의 차수가 4차로 같으므로 양변을 a의 네 제곱으로 나누면? (b/a)를 한 문자로 볼 수 있겠죠? :)
[19번 문항] 그래프의 개형을 이용하면 쉽게 풀 수 있습니다. 이때, 사람 손으로 그리는 그래프는 컴퓨터처럼 정확하지 못하기 때문에 기준을 설정하는 것이 중요하겠죠? 이 문제에서는 원점에서의 미분계수(혹은 좌미분, 우미분계수)가 y=h(x)의 기울기의 관계에 초점을 맞추는 것이 중요합니다.
[18번]. [19번]의 자세한 풀이는 영상을 참고 해주세요!
[20번 문항] 연속 조건을 이용해서 함수 f(x) 및 k의 값을 알아내면 되겠죠? 이후 넓이를 t에 대한 식으로 나타낸 후 풀면 됩니다. 이때, t의 값이 0보다 크고 6보다 작은 양수일 때, 넓이를 구해야 하는 도형이 하나의 삼각형이 아니라, 삼각형 3개로 이루어진 도형이라는 사실에 주의해야 합니다.
그리고 이때 S(t)를 식으로 나타내면, S(t)가 미분가능하지 않기 때문에 출제 오류임을 알 수 있습니다. (손풀이에서는 출제 의도대로 답을 냈지만, t=6에서의 좌미분계수는 양수, 우미분계수는 음수가 되므로 모순입니다!)
[18번 문항] 해설 영상입니다.
[19번 문항] 해설 영상입니다.
지금까지
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 해보았습니다.
특별한 아이디어나 발상을 요구하는 문제는 없지만 전반적으로 쉬운 시험은 아니라 생각되네요. 배운 것에 근거해서 문제를 분석하는 과정을 생략하고, 경험이나 느낌에 의존해서 손 나가는데로 풀면 계산이 너무 복잡하거나, 잘못된 방향으로 가다가 시간만 뺏기고 답을 내지 못하는 문제가 많을거라 생각됩니다. 시험에서 이렇게 되면 멘탈도 흔들리게 되므로 점수가 폭락할 가능성이 높습니다.
반면, 배운 것에 근거해서 차근차근 문제를 분석한 후, 차근차근 풀면 (특별한 아이디어나 발상을 요구하는 문제가 없기 때문에) 무난한 시험이 될 것 같습니다. 그러니 항상 기본에 충실하기 바랍니다.
2. 거의 모든 고난도 문항에 즉각 적용 가능한 치트키 2 : https://orbi.kr/00062194726
3. 문자의 개수 vs 식의 개수 (feat. 연세대) : https://orbi.kr/00064497772
4. Double Counting Method : https://orbi.kr/00068374111
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
FOMO라고 들어보셨나요? Fear Of Missing Out. 놓치는 것에 대한...
-
다시 포지션잡습니다.
-
개꿀잼일꺼임 수학 물리 풀이도 올림 @mammummam
-
재작수 개처망하고 수능끝나자마 탈퇴함.. 근데 고마웠던분들이 좀 많아서 비갤에다가...
-
선착순 10명 게이 38
답글러들 다 게이임 ㅋㅋ
-
이시간에 맘터 핫싸이순살어쩌고 먹고있음 웃긴건 베릴, 시우 둘다 숙소인데 베릴은...
-
학교생활이 너무 힘든데 자퇴를 하지 말라고 하는 주변인들 말 듣고 학교 꾸역꾸역...
-
이미지 써주세요ㅠㅠㅠㅠ 13
보다는 제 신상정보를 아는대로 다 써보세요
-
내신대비 칼럼 쓰려고 했는데 얘네 5등급제로 바뀌니까 못 쓰겠음 ㅋㅋㅋㅋ 그래도...
-
이미지 써드림 41
-
마지막 수능이 22수능인 현 연고문과 재학생 틀딱입니다 최근 문디컬 진학 생각이...
-
잠자겠습니다 6
사진은 그레고르 잠자입니다
-
이미지써줌
-
이미지 메타인가 3
맞습니까
-
공통은 정병호쌤 프메 잘맞는 거 같아서 하는데 미적은 뭔가 남들보다 뉴분감 열심히...
-
한지랑 지2를 같이 해야 하는 EU가 있었다니~~☆ 2
캬 물어보는 내용이 그냥 일치하는데 이래도 선택을 안하냐고 ㅋㅋㅋㅋㅋ 하 .......
-
체스를 두는 나 0
근데 고양이한테도 지는
-
정병호T 2
수1 프로메테우스 원솔멀택 어떤가요?? 제 수준에서 충분히 따라갈만한가요?...
-
그냥 기분이 너무 좋아요 댓글 달고 응원도 해주고 서로 행복해집시다
-
금방 마감합니다 그리고 기억력 금붕어라 오래봐왔는데 기억 못할 수도 있음 성의없게 써도 봐주세요 ㅠ
-
胸が苦しいわ 13
一体いつになったら俺の人生が正常化されるんだよ、ちくしょう
-
한마리 다 먹고 좀 부족함;;
-
입시 ssul 2
수능전날에 부모님이랑 밥먹으러갔다 밥먹고 와서 토함 그래서 집와서 타이레놀 2알먹고...
-
ㅋㅋ
-
제 주민번호도 까먹는답니다....
-
귀여워!!!!
-
지금 김현우쌤 미적 정규반듣고(라이브로..)있긴한데 미적시대컨만 나오더라고요..?...
-
2주 3주뒤에 수1 수2 다 끝날듯뇨 그리고 기출 4일컷 할꺼임뇨 그리고 미적도...
-
탕!
-
근데 저 펌 하다가 망해서 또 붙임머리하느라 50정도 더태울예정 돈개많이든다
-
언미영사탐사탐기준으로 언매빼고 미적 90 영어 2 사탐 90 사탐 90 맞으면...
-
강민철은 안 맞는 거 같음
-
안녕하세요 오랜만입니다 18
반가워요
-
ㅇㅈ 6
는 옵치 추천레벨 ㅇㅈ
-
저격 1
-
좋다는 반응이 많이 보여서 뉴분감 다하고 첫 n제로 풀까 하는데 너무 어려울까요?
-
뱃지 바뀌었나요 9
제곧내
-
개강싫어
-
걍 칼럼 계속 쓰겠습니다 그게 나을거 같네요 욕먹어도 좋아요 그냥 자기 만족입니다
-
테슬라 떨어져라 6
신께서 명령 하신다
-
수시를 버리지 않은 정시파이터들 양성이 목표인가? 최저를 높게 잡고 그럴려나
-
이런 노 근본 닉 꺼져라 드디어 복귀하는구나
-
킬러기준 4
몇년대씩 킬러가 다르다는데 기출풀때마다 헷굴려서 기준좀 알려주세요
-
샌드위치 이제 그만 만들고 싶어
-
대전 제일학원이랑 종로학원 다니거나 다녀보신 분 시설 분위기 시스템 어떤가요?...
-
밸런스 맞나요??
-
반박 시 차은우 인정 시 강동원
-
헤헤헤 3
헤히
-
초등학교 교과서 가지고 예습 복습 원하시는데 이거 준비 어떻게 해야할까요..
첫번째 댓글의 주인공이 되어보세요.