[신성고] 수학2 기말고사 손풀이 + 해설 영상
게시글 주소: https://orbi.kr/00070236092
안녕하세요. 수학의 판도를 바꾸는 Math Changer 어수강 박사 (과천 "어수강 수학" 원장)입니다. 오늘은
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 하도록 하겠습니다.
PS. 신성고 학생이 아니더라도 시험 준비에 크게 도움이 될거라 생각합니다.
1 페이지는 무척 쉬우므로 해설은 생략합니다.
2 페이지도 무척 쉽지만 코멘트 하나만 할게요!
[6번 문항] 평균값 정리가 상당히 유용한 정리임에도 이와 같이 무의미한 형태로 출제되는 것이 상당히 안타깝습니다. ㅠ_ㅠ
이제 3 페이지를 볼까요?
[10번 문항] 미지수가 2개 (a와 f(x)의 상수항)이므로 등식을 2개 이상 얻어내면 되겠죠? 주어진 식의 양변에 x=0을 대입, 주어진 식의 우변을 적분한 후에 x=a, x=1을 대입하면 계산 문제가 될 것 같네요!
위와 같은 풀이도 당연히 가능하지만, 조금 더 계산이 간단하면 좋겠죠?
저는 함수의 그래프를 이용하여 방정식 f(x)=f(a)에서 x=a가 삼중근임을 알아낸 뒤, 인수정리를 이용하여 가볍게 풀었습니다. 시험에서 이와 같은 풀이를 찾아낼 수 있다면, 시간 절약은 물론 실수할 가능성도 크게 낮출 수 있겠죠?
고등수학에서는 복잡한 것을 그대로 계산하는 것은 학습목표가 아니므로 "복잡한 것을 간단히"하는 도구 또는 아이디어에 초점을 맞추고 공부할 것을 강력하게 권장합니다!
[11번 문항] [12번 문항] 문제에 주어진 조건에서 원하는 것을 얻어내기 위해 한 단계 한 단계 차근차근 풀면 그리 어렵지 않습니다. (feat. 삼단논법!) 이때, 문제의 포인트는 미지수가 a, b 두 개인데, 등식이 하나라는 것이겠죠?
미지수의 개수를 줄이거나 식의 수를 늘려야 하는 상황입니다! 저희 수업에서는 이런 상황에 대처할 수 있는 방법을 매 시간 강조하고 있는데요. 이 문제의 경우, 모든 항의 차수가 같으므로 양변을 하나의 문자로 나누면! 분수식(a/b 또는 b/a)을 하나의 문자로 볼 수 있게 됩니다!
그 뒤론 쉽게 풀 수 있겠죠?
이제 4 페이지를 볼까요?
[13번 문항] 주어진 등식으로부터 f(x)가 삼차식임을 알아낼 수 있다면, f(x)의 계수를 문자로 두고 풀면 되겠죠? 하지만 연속함수 f(x)에 대하여 f(x+1)-f(x)가 이차식이라고 해서 f(x)가 삼차식이라는 것을 배운 적이 없기 때문에 주의해야 합니다. 서술형이라면 크게 감점되겠죠?
구간의 길이가 1/2, 1인 정적분 값을 이용해서, 삼단논법으로 주어진 것에서부터 구하는 것으로 차근차근 나아가면 쉽게 풀 수 있습니다! 자세한 풀이는 해설 영상을 참고 해주세요 :)
[14번 문항] 원의 넓이를 시각 t에 대한 식으로 나타내면 되겠죠? :)
[16번 문항] 직접 계산은 너무 복잡하네요! 저는 근과 계수의 관계를 이용해서 간단히 풀었습니다 :)
마지막으로 5 페이지입니다.
[17번 문항] 교점의 좌표를 문자로 놓고 식을 세우면 되겠죠?
[18번 문항] 그래프의 대칭성 & 인수정리를 이용하면 간단히 풀 수 있겠네요! [11번], [12번] 문항과 마찬가지로 a, b에 대한 4차식에서 모든 항의 차수가 4차로 같으므로 양변을 a의 네 제곱으로 나누면? (b/a)를 한 문자로 볼 수 있겠죠? :)
[19번 문항] 그래프의 개형을 이용하면 쉽게 풀 수 있습니다. 이때, 사람 손으로 그리는 그래프는 컴퓨터처럼 정확하지 못하기 때문에 기준을 설정하는 것이 중요하겠죠? 이 문제에서는 원점에서의 미분계수(혹은 좌미분, 우미분계수)가 y=h(x)의 기울기의 관계에 초점을 맞추는 것이 중요합니다.
[18번]. [19번]의 자세한 풀이는 영상을 참고 해주세요!
[20번 문항] 연속 조건을 이용해서 함수 f(x) 및 k의 값을 알아내면 되겠죠? 이후 넓이를 t에 대한 식으로 나타낸 후 풀면 됩니다. 이때, t의 값이 0보다 크고 6보다 작은 양수일 때, 넓이를 구해야 하는 도형이 하나의 삼각형이 아니라, 삼각형 3개로 이루어진 도형이라는 사실에 주의해야 합니다.
그리고 이때 S(t)를 식으로 나타내면, S(t)가 미분가능하지 않기 때문에 출제 오류임을 알 수 있습니다. (손풀이에서는 출제 의도대로 답을 냈지만, t=6에서의 좌미분계수는 양수, 우미분계수는 음수가 되므로 모순입니다!)
[18번 문항] 해설 영상입니다.
[19번 문항] 해설 영상입니다.
지금까지
[신성고] 2023년 2학년 2학기 수학2 기말고사 손풀이 + 해설 영상
를 포스팅 해보았습니다.
특별한 아이디어나 발상을 요구하는 문제는 없지만 전반적으로 쉬운 시험은 아니라 생각되네요. 배운 것에 근거해서 문제를 분석하는 과정을 생략하고, 경험이나 느낌에 의존해서 손 나가는데로 풀면 계산이 너무 복잡하거나, 잘못된 방향으로 가다가 시간만 뺏기고 답을 내지 못하는 문제가 많을거라 생각됩니다. 시험에서 이렇게 되면 멘탈도 흔들리게 되므로 점수가 폭락할 가능성이 높습니다.
반면, 배운 것에 근거해서 차근차근 문제를 분석한 후, 차근차근 풀면 (특별한 아이디어나 발상을 요구하는 문제가 없기 때문에) 무난한 시험이 될 것 같습니다. 그러니 항상 기본에 충실하기 바랍니다.
2. 거의 모든 고난도 문항에 즉각 적용 가능한 치트키 2 : https://orbi.kr/00062194726
3. 문자의 개수 vs 식의 개수 (feat. 연세대) : https://orbi.kr/00064497772
4. Double Counting Method : https://orbi.kr/00068374111
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅎㅇ
-
나 빌런이었음? 6
-
종강좀 0
엉엉
-
이런 말 처음들어보네 13
님들은 자주사용하는 단어임?
-
ㅈㄱㄴ
-
아그럼 또 뭐사야하지 ㄹㅇ
-
편입 학과 0
이번에 편입을 준비하게 되었습니다 사실 고등학교때부터 철학과에 진학하고 싶었는데...
-
일반적으로 어지간한 학과는 다 있는 학과가 다 있는데 국가가 TO를 관리하지...
-
기숙에서 공부하다가 오랜만에 폰받아서 주변에 재수하는 친구랑 연락했는데 왜 이렇게...
-
메이드카페 다녀옴 14
미소녀메이드와 이야기하니 즐거웠읍니다
-
가볼만한 곳이요
-
이거 해설을 어떻게써야 납득을하려나
-
배성민 커리 1
수학 3등급이 목표인데 배성민 워밍업 플러스 + 쎈 병행중이고 다 끝나면...
-
캬 기분 째지노 그팽녈차 가쥬아ㅏㅏㅏㅏㅏㅏㅏㅏㅏㅏㅏㅏㅏㅏ
-
25수능 언매 87 확통 98 영어 2 (88) 정법 94 사문 74 사문만...
-
환장하겄네 0
ㅅㅂ얘는 또 왜이래
-
ㅠㅠ 통역 남들처럼 잘하고 싶은데... 국내파에 독학이라 그런가... 통역답지 않은...
-
영웅아 호걸아~ 2
끼잉 끼잉.. 살려줘새요
-
역 로피탈이 가능했었나 18
평가원 기출에서 썼던 기억이 있는 것 같은데
-
뭐 살까 골라줘
-
사문이 만점 공부량 1이라하면 생2, 화1 1컷받을 공부량은 어느정도 일까요?
-
화정체육관 0
큰 행사는 화정에서 많이 하던데 화정이 그렇게 커요??
-
ㅈㄱㄴ
-
병아리헤드가 저 맞는데 탭에서는 초대장이 안 오나 봐요(컴퓨터 맛가서 자바 확인...
-
난이도 상관없습니다
-
수분감 1.5회독?(틀린거만 다시품) 했는데 한완기 교사경 푸는게 나을까요 아니면...
-
순대6천원 7
맛있음 근데 3시간 뒤에 먹어서 퍼드러짐
-
ㅎㅇ 2
ㅂㅇ
-
예전에 만든 문제들 모아서 모의고사나 하나 올릴까요? 12
수1, 수2, 확통, 미적, 기하 전과목으로 한회분은 만들 수 있을텐데... 근데...
-
밥먹으러나가야징 6
저메추!
-
벽에 끼엇음 1
뒤에 누가 잇는거같음
-
트랄라랄라 트랄루루 이거랑 애쉬톤 홀의 모닝루틴 이거 둘밖에 안 뜸
-
어디가 취업 더잘해요?
-
어떻게 푸나요 ㅜㅜ
-
수학노베질문 0
수 1 수 2에서 어렵다하는 유형 (함수와 그래프, 삼각함수 등등) 일단 푸는...
-
필노 입갤 0
4회독 on 한국어 뭉개는건 챗평ㅋㅋ 김범준 스블 필기노트
-
기하랑 생2 하려하는데 새로 공부한다는 것에대한 부담감과 해야할 게 많아서 오는...
-
벚꽃이 그렇게도 예쁘디 바보들아
-
서술 범주 파악은 강평ㅋㅋㅋㅋ 이 답글 꼭 달림
-
벽느껴졋음 0
정벽임
-
해석 보는데 머리 깨져서 여기다 부탁드려봅니다 ㅜㅜㅜ 해설도 혹시나 해서 참조해요
-
근데 버스에 사람 왤케 없지 다들 차 타고 놀러갔나요
-
국어를 못하면 수능날 자체를 망치며 영어를 못하면 미친듯이 찝찝하고 사탐을 망치면...
-
학점 던질까 0
학점 자리 한 번 남겨줘? 할려면 할 거 같은데 하자니 귀찮은데
-
수학컷 신기한거 2
어려우면 생각보다 많이 안떨어지고 쉬우면 생각보다 컷이 안높음 저만 그렇게...
-
문학이랑 스키마 구조도 없는 게 조금 아쉽네요 물론 해설은 최곱니다
-
고3 내신인 수학 과목이 2개인데 하나는 등급 안나오는 기하---> 이건 ㅇㅋ 다른...
-
혼자서 생각해 본 수능 수학 확통/미적 표점차(틀린 거 있으면 댓글 부탁) 0
확통과 미적의 표준점수 차이는 Team 미적과 Team 확통의 공통표준편차와 선택...
첫번째 댓글의 주인공이 되어보세요.