-
범작가 기밀문서 0
언제 재판매하는지 아시는분 ㅜ
-
지방국립대 1
추가모집 2n까지는 힘들죠?
-
방학이 없어요 히히히
-
아니 소름이 아니고 당연한게 아님이 아니고
-
인스타 스토리에 박제될 사람 한 명은 있지 않을까
-
짐 정리 끝!! 4
짐 진짜 많음 근데 울면서 싸우다가 짐정리해야해서 사이좋게 일한거 너무 웃기넼ㅋㅋㅋㅋㅋㅌㅌㅌ
-
현우진 한 한 달인가 두 달 전에 무슨 애니 프사 잘못 저격했지 않음? 5
그때 무슨 인스타 댓글에 욕했다 뭐다 이러면서 차단했네 마네 하는데 알고 보니까...
-
낼 새터네 0
벌써부터 기빨려서 집가고싶다 1박2일은 ㄱㅊ은데 2박3일은 빡센데..
-
13×17 이런거를 x=10이라 두고 (x+3)(x+7)이니까 100...
-
먼일임??? 신남성연대??라고 배인규라는 사람이 이대 안에서 탄핵 찬성하는 여대생들...
-
흐흐
-
근데 솔직히 말해서 메인글 어느정도는 공감함 이러면 인스타에 박제 당하는거임?
-
밖에 돌아다니는 커플들 아니 주변 친구들만 봐도 그저그런 얼굴이나 솔직히 조금...
-
이거 풀렸구나
-
애초에 치과의사를 대체할려면 AI뿐만 아니라 로봇공학쪽이 오지게 발달해야하는데...
-
전화 고프다 16
수다 떨고 싶당,,,
-
요즘 캐슬 보기 전마다 설렌다
-
솔직히 4
킁은 레전드임요
-
옵치할사람 0
나랑같이해줘
-
오르비 참 1
오르비스럽다
-
과외생 밥사줄건데 28
뭐 사주지 생일이래서 과외끝나고 고기나 한번 사줄까했는데 얘네가 워낙잘먹어서 좀...
-
사흘에 한 번도 충분
-
허리아파
-
추가모집 0
75455갈 지방국립대 있을까요?ㅋㅋ
-
꼭 마지막에 이런걸로 시간뺏기는데 이런거 어캐빨리함?? 지금이라도 시간있을때...
-
올해 내 목표 2
수탐퍼거
-
"271표 부족" 양양군수 주민소환 무산…"지역 카르텔에 패배"(종합) 2
(양양=뉴스1) 윤왕근 기자 = 여성 민원인 상대 성비위와 뇌물수수 논란으로 추진된...
-
모솔특) 4
연애안해봄
-
솔직히 수능은 국어빼고 노잼임
-
작년 6모 9모 백분위 93 / 95입니다. 수능은 94구요 언매 한 번더...
-
하락장 뭐지 1
진짜 쉴새없이 돈 빠지네
-
난 민주가 젤이뻐보이는디
-
1년안씻으면 3
물1물2만점 맞고 표점으로 동강대 의대 ㄱㄴ?
-
다이소에서 건기식 판다고 약사 협회에서 반발이 일어났대요
-
영화를 너무 많이 봐선지 몰라도 시정명령 영장발부 체포영장집행 캬캬 늦게까지...
-
봉감독님이 판때기 들고있는거 같음
-
오늘 관독 앞자리분 냄새가 유난히 심했음...
-
음.. 3
내 머리를 믿는 공부 한 번 해볼까 믿을만한 머리는 아닌거 같긴 한데
-
이거 a맞으려면 며칠 안씻어야 되나요
-
이제 새학기도 시작하고 과외를 구하는 사람이 많을 것 같아서 뻘글같은 정보글을...
-
짐싸기 귀찮네 5
하지만 서울을 가야해
-
비틱게이
-
기출분석 다시하니까 신세계가 보임
-
제가 작년에 신텍스, 알고리즘 들었는데 수능떄 3이떴습니다. 복습을 잘 안해서...
-
경제학과에 관심있는 학생들에게 도움이 될 것 같아 서울대 경제학부의 커리큘럼을 설명...
-
피규어 정리함 2
ㅁㅌㅊ?
-
같이 롱런하자 한 5수까지
-
아니,, 누가 자꼬 내글이랑 댓글에 좋아요 누르지??? 1
걍 누가 눌렀나보다했었는데 일관성있게 이러는거보니까 누가 작정하고하는거같은데,,,
이거 6개 점이 다 일직선상이면 어캄
아 ㅈㅅ 그거 빼야되네
어떤 3점도 일직선 위에 있지않음뇨
이런 기본적인걸 빼먹다니
임의의 점 p를 선택합니다. p에서 다른 5개의 점으로 연결되는 선분은 5개가 있습니다. 이 선분들은 빨간색 또는 파란색입니다. 비둘기집 원리에 의해, p에서 뻗어나가는 선분 중 적어도 3개는 같은 색을 가집니다. 일반성을 잃지 않고, 이 색을 빨간색이라고 가정하겠습니다. (만약 파란색이라면 빨간색과 파란색을 바꿔서 생각하면 됩니다.)
p와 빨간색 선분으로 연결된 3개의 점을 q, r, s라고 부르겠습니다. 이제 세 점 q, r, s 사이의 선분을 살펴봅니다.
만약 q, r, s를 연결하는 선분 중 하나라도 빨간색이라면, 예를 들어 q와 r을 연결하는 선분이 빨간색이라면, p, q, r은 모두 빨간색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
만약 q, r, s를 연결하는 모든 선분이 파란색이라면, q, r, s는 모두 파란색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
어떤 경우든, 한 가지 색의 선분으로만 이루어진 삼각형이 존재함을 보였습니다.
결론
6개의 점이 있고, 이 점들 중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결하면, 반드시 한 가지 색의 선분으로만 이루어진 삼각형이 존재합니다. 이 문제는 램지 수 R(3,3) = 6의 한 예시입니다. 즉, 6개의 점이 있으면 어떤 방식으로 두 가지 색으로 색칠하더라도 단색 삼각형이 반드시 나타난다는 의미입니다.
흠..
완벽하긴하네..
ㄷㄷㄷㄷ
지피티 냄새
멍청한 공대생은 GPT 없이 못 살아
님 항상 보면 수학 이론들 많이 알고 계시던데 수학과 지망하시나요
넨
오 ㄷㄷ 멋지네요 필즈상 수상하시길
그건 좀..
뭐임 또 나만 저능하지 ㅜ
저거 지피티임뇨
풀엇음뇨 헤으응
한 점 기준으로 같은 색 선분 3개는
필수인거 생각하면 풀리네용
이거 맞아요
선이 교차해서 만들어지는 삼각형 말고
점민 이어서 만들어지는 삼각형만 따지면
점 세개를 생각하고 빨빨파로 비원색 삼각형이 있음
그러면 한 빨변에 대해서 파파로 비원색 삼각형을 또만듬
이때 마지막으로 만든 삼각형에서부터 대충 대각선 그으면 파란색이든 빨간색이든 원색 삼각형이 생김
머지 이게
먼지 모르겟음
이거 됨뇨?
삼각형이 주어진 6개의 점으로만 이루어져야됨뇨
망했뇨
애초에 이풀이도 틀린거같기도 걍 머리가 안돌아감
문제가 너무 길어요 요약해주세요