Intersection
게시글 주소: https://orbi.kr/00070074391
Q. Can a boundary map on a long exact sequence of homology on manifold be interpreted as an actual topological boundary of a manifold representing the homology class?
A. True if the class is representable by a manifold with boundary. If $M$ is a compact $n$-manifold with boundary, it has a fundamental class $[M]\in H_n(M,\partial M)$ (coefficients being whatever as long as you're orientable w.r.t. them) and its image under the connecting homomorphism of the pair $(M,\partial M)$ is the fundamental class $[\partial M]\in H_{n-1}(\partial M)$ of the closed $(n-1)$-manifold $\partial M$ with the induced orientation. So, if $f\colon(M,\partial M)\rightarrow(X,A)$ is some map of pairs (the representing manifold of a class), naturality of the pair sequence yields $\partial(f_{\ast}[M,\partial M])=f_{\ast}[\partial M]$ and if $M$ is closed, this is zero, but that's not surprising cause the element then factors through $H_n(X)$ and the composite $H_n(X)\rightarrow H_n(X,A)\rightarrow H_{n-1}(A)$ is zero.
Intuitively, If $[\sigma]\in H_n(X,A)$, then $\sigma$ is some chain in $X$ with boundary inside of $A$. Since it represents a homology class, it should be a cycle, but it need not boundary anything entirely in $A$, so it could be a nonzero representative in $H_{n-1}(A)$. In other words, if $\sigma\mapsto X$ is a chain so that its topological boundary $\partial\sigma$ be mapped entirely into $A$. This boundary represents an element of $H_{n-1}(A)$. Although this is a more or less intuitive argument, this is exactly what's happening on topology. Algebraic machinery is just make this rigorous in algebraic language.
Q. How do you see the Alexander duality?
Rmk. Alexander duality: Let $X\subset S^n$ be a submanifold. Then $H_{p}(S^n\setminus X)\simeq H^{q}(X)$ where $p+q = n-1$. Or, $H_p(\Bbb R^n\setminus X)\simeq H^q(X)$ where $p+q = n-1$.
A. One of the most important interpretation of Alexander duality is via linking numbers of submanifolds, or more generally $k$ cycles. Consider $k$-cycle $z$ in the space $X$ of dimension $k$, and an $(n-k-1)$-cycle $w$ in the complement of $\Bbb R^n$. Then $w = \partial v$ in $\Bbb R^n$ for some cycle $v$. Now take the algebraic intersection (cup product) of $z$ and $v$. This defines a bilinear pairing $H_k(X)\otimes H_{n-k-1}(\Bbb R^n\setminus X)\to\Bbb Z$, called the linking number and gives an Alexander duality. Note that the linking number here is compatible with the linking number in the classical links in $S^3$. This is just a high dimensional analog. See this answer for more geometrical interpretation of high dimensional linking number https://mathoverflow.net/a/332250/323920
Under this interpretation, in case of knot $K$ not link in $S^3$, $S^3\setminus K$ can be thought as a "dual knot" which has linking number 1 with $K$. In particular, every knot complement has $\Bbb Z$ in the first homology, generated by a single "dual unknot" (meridian) of $K$.
One can actually define linking number from Alexander duality as follows: This time we let $M^p,N^q\subset\Bbb R^n$ be closed connected oriented manifolds with dimension $p$ and $q$ and $p+q = n-1$. Then by Alexander duality, we have $\Bbb Z\simeq H^p(M)\simeq H_{q}(\Bbb R^n\setminus Z)$. Now we consider the induced map $i_*:H_q(N)\to H_q(\Bbb R^n\setminus M)$ via inclusion $N\hookrightarrow \Bbb R^n\setminus M$. This map sends the fundamental class of $N$ to some integer times the fundamental class of $H_q(\Bbb R^n\setminus M)$, obtained by the isomorphism from Alexander duality. This integer is exactly the linking number of $M$ and $N$. You will see without much difficulty that these two back and forth are compatible.
- Intersection theory
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
프리패스 구매하고 pmp에 다운받으려는데 다운받는곳이 없네요????? 컴퓨터로는...
-
코원 g7 사용중입니다. 작년에도 인강 이 pmp로 봤고요. 지금 qna 올려놓긴...
-
Pmp 팔아요 01027423555연락주시면 사진보내드려요 새겁니다 케이스도있구요
-
오르비에서 재작년부터 못 받게 해놨다는데 이거 진짜 방법 없는건가요ㅠㅜ 정수환 T...
-
폰으로 받아서 sd카드에 넣는다던가 전혀 아예 없는건가요 방법이 정수환T 생윤...
-
지금 이투스 학습기기 1위에 코원 g7 26만원에 팔길래 사려고 하거든요.. 근데...
-
아이패드가고장나서 폰을 pmp로 등록해서 들으려하는데 안되네요ㅜ
-
태블릿은 저도 모르는 사이에 와이파이쓸 것 같아서 pmp를 하나 장만하려고 합니다....
첫번째 댓글의 주인공이 되어보세요.