연속함수를 적분하면 연속함수인가요
게시글 주소: https://orbi.kr/00069686810
연속함수를 적분하면 연속험수인가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안녕하세요. 저자 분께 전달 받아 모의고사 관련 공지를 업로드합니다. 학습 계획을...
-
지1 특 0
실력 좀 오른 8~10월 중순까진 재밌다가 수능 다가오면 미친듯이 쫄림
-
나 개쩌는듯 13
흐흐 역시 나야
-
따로 실모 안 사고 이거만 해도 될듯 한데
-
미적을 3학년 되어서 시작한것 진짜 이거 보는 2학년들 있으면 정말 지금 당장...
-
사문 2
사만다 풀 땐 40초~중 나오는데 브릿지 푸니까 시간도 널널하고 47~50나오는데...
-
발문 ㅈ같고 개패고ㅗ 싶은 이감 상상 풀다가 한달만에 평가원 기출 보니까 너무 깔끔해서 속이 편함
-
나는 이감 70~80 (3등급) 상상 80~90 (2~1) 바탕 88~96...
-
수능 때 어느정도 예상함?(정시파이터임)
-
홍보 파일입니다! 감사합니다.
-
요즘 실모보면 2페이지부터 걍 존나 시간 잡아먹고 1페에서도 지엽을 던지든 파동으로...
-
궁금
-
이감 앱 왜이래 1
갑자기 안들어가짐
-
소지중이신데 풀지 않을 것 같으면 저에게 판매해주세요..ㅜㅜ
-
안녕하세요 0
https://orbi.kr/00069701991 지나가다 댓글 좀 남겨주세요
네
왜요??
미분가능하니까?
그걸 조금 더 수학적으로..? 표현가능할까요? 면접 준비라서요...
정적분으로 정의된 함수를 원하시는건가요??
연속함수 fx를 적뷴했을때 Fx가 무조건 연속인가? 왜 불연속은 불가능한가? 가 궁금해요!
부정적분의 정의가 미분의 역연산이니까??
오 그렇게 해도 오류가 없나보네요 감사합니다!
연속함수를 미분하면 연속함수입니다. 도함수를 다시 적분하면 원래 함수잖아요
헉 이런식으로 생각하긴 했는데 오류가 없을까요?!
대학수준으로 넘어가면 잘 모르지만 고등학교 수준에선 무리 없을듯
?
제 설명에 오류가 있나요??
|x|를 미분하면
-1(x<0)
1(x>0)
인데 이게 미분가능한가요
아! 그렇네요 죄송합니다
적분이 넒이 잖음. 옛날에 사각형 여러개로 적분배운거 기억해 보삼. 연속함수의 넒이를 구하는데 어떻게 그게 불연속일 수 가 있겠음???? 있어도 교육과정 밖임
도함수가 연속인 함수
오 이렇게 말하면 꼬리질문 들어올게 없을것 같네요 감사합니다!