님들이 관심있는거를 명제로 나타내셈
게시글 주소: https://orbi.kr/00069386140
그리고 그명제를 대우명제로 바꿔도 보고 귀류법도 써보고
부정도 해보고
다른명제랑 연결도 해보셈
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 덕코 1등이라는 거슨 좋은거에요
-
수능은 끝이 아니라 시작입니다 시작도 못한 상황에서 무너져있을 순 없죠 이 세상에...
-
4합3맞추자 7
하나만0등급맞으면
-
80퍼는 여붕이같은데
-
해모살까 5
흠
-
38일 1
자살
-
ㅈㄱㄴ
-
화작 -3인데 4등급 컷인가요?
-
가끔 쟤 꺠워라 하시는데 이거 옆자리 수강생한테 시키는거예요? 조교한테 깨우라고 시키는거예요?
-
놀랍게도 9평화작이 이감보다 어려움 난 진짜 화작 좀 어렵길래 1100은 아닐줄
-
인터넷 실명제가 필요하다는 생각이 든다… 특히 릴스에 성희롱 너무 많음 안 야한...
-
가능성에 중독된 상태?
-
어떤분이 질문올리셨는데 칸트에 따르면 도덕법칙 하고 준칙 차이를 물어보셨습니다 근데...
-
김범준T 1
첫 강의보기 전까지는 강대x 광고에 나오는 사진보고 와 카리스마 미쳤는데?하고...
-
어떤가요? 오반가..
-
어땠음 삼도극 무등비 나와서 얼탱없던데
-
꼬불꼬불 0
쓰임새랑 생김새가 나름 달라서 헷갈리진 않는듯
-
재부팅 완료 5
으하하
-
암석의 절대연령 비교 해령에서의 지각 생성 속도 및 생성량 바교 고지자기로 지괴...
-
한종철 rgb 푸는데 왤캐 어렵나요... 13분 컷 낸다는 사람들은 비법이 뭔지...
뭉탱이의 역은 유링게슝이다.
Continuous => integrable
E has measure zero => Riemann, Lebesgue integrable
Closed & bounded => compact (in real)
고졸인디..
(Closed & bounded) & ~compact
이거 참임?
Closed하고 bounded면 compact이라고
제말은 그 명제를 부정형으로 만들라는거임
Every closed and bounded set is compact.
Therefore there does not exist set which is closed and bounded and compact.
그럼 대우명제는요?
If some subset of real is not compact, then the set is not either closed or bounded
참인가요
당연하죠
실수체에선 닫혀있고, 유계인 집합은 컴팩트하다는 건 동치임이 알려져 있습니다…
대우명제가 참인가요? 그게 대우명제임?
애초에 명제가
“실수에서 닫혀있고, 유계인 집합은 컴팩트하다”라면 그 대우인 “컴팩트하지 않은 실수의 부분집합은 닫혀 있지 않거나, 유계가 아니다”가 당연히 되겠죠????
그렇군요 고졸이라 뭔말인지는 모르겠습니다