진짜 이거 안되는 거였음..? 첨 알음ㄷㄷ
게시글 주소: https://orbi.kr/00069385246
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기차역 가서 실물 표 받아야하나여 혼자 기차타고 타지 가는게 첨이라 모르겟음..
-
지금 정병호 듣고 있긴한데 미적이 약해서 미적만 한명 더 들어보고 싶은데 미적으로...
-
뭔가 극한식이 비슷하게 생겼다...! 대 윽 건!(24드릴 수2 1-6) 킬캠은...
-
오늘은 글씨가 예쁘게 안사지네 플래너 주문할거임
-
잡담 해제도 한 명도 안 함 팔로잉 하는 분들 모든 글 다 보고 있어요 ㅎㅎ 그래서...
-
이거 세줄 다 ~~ㅎ겟습니다 이러는데 밑줄치란건지 붙여읽으란건지 모르겟네 전에는...
-
내일 고백합니다
-
언제쯤 해요?
-
메가 내신 환급 0
1학기 내신 2학기 내신 기간내에 못쳤으면 절대 안되나...?
-
하루에 샤워 2번 하면 됨
-
시간참빠르다
-
인증을 뒤지게 많이 함-> ㅈㅅ이제절대인증안함 공부글만 씁니다 ->ㅅㅂ비갤에 누가...
-
너무 졸림 1
너졸 너졸이라서 집 가서 잠 너졸집잠
-
할게없다
-
오르비에서 그 사람들 보이면 프로필 누르고 멍~ 하고 보게 됨
-
재수 때 연애 3
하면 안되겠지?.. 아직 사귀진 않는데 만약 사귀다가 중간에 헤어지면 멘탈 바사삭일듯
-
진짜 수고했다 0
무승부 ㅅㅅ
-
후쿠시마 선동 이태원참사 선동 탄핵 선동 국민들 진보진영으로 끌어오기 등등 지령...
-
2달 동안 해주셨는데, 지금까지 과외 선생님이 생일선물이랑 목표 대해 굿즈...
-
D-260 1
.
-
못봄 그래서 옯찐따가 됬나
-
의미파악을 잘 하면 핑크색 영역 넓이가 분자 절반임 사다리꼴 넓이 공식에서 1/2...
-
들어오긴 개쉬운데 나가기가 겁나힘듬 그래서 안나갈거야
-
안녕하세요 1
-
이 개같은 몸뚱아리 이끌고 언제 가냐
-
사회 지리학의 스케일 개념 - 수특 독서 적용편 사회·문화 09 0
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오늘은...
-
자 꾸 5
아찔한이느낌
-
으하하
-
일어남요 3
-
어제 9시에 자서 지금 일남;;;;
-
수2 자작문제 0
-
화이팅
-
스블 0
작년 모의고사 전부 높4~낮3인데 스블 이렇게 머리 깨지면서 들어도 되나요?...
-
모닝 하겐다즈 5
후 김밥 사서 스카
-
기상 1
아기 힘듦
-
얼리벌드~ 2
-
운동 0
새벽 오뿌이들 사랑해
-
김밥 추천점뇨 3
진지함.
-
얼버기 2
모닝~
-
부경인아는 1
어느 라인이랑 겹침? 국숭세단? 광명상가? 친구중 한명은 국민대랑 인하대 같은과...
-
얼버기 2
-
힘내라 샤미코
-
난 왜 안돼
-
난 누구지 2
여긴 어디
-
이제 자야겠군 3
성찰을 많이하게되는 하루네요
-
그냥 안들었어요 수강신청에 자신이 없었어서
-
그나저나 100팔로우 한명남았는데 맞팔하실분 있나요
-
기차지나간당 13
부지런행
-
대강의 정시, 수시 컷 아시는 분 있으시면 (전북권) 쪽지로 보내주시면 너무나 감사합니다 :)
y/x = y * 1/x, x에 대해 미분
(dy/dx) * (1/x ) - y * (-1/x^2 ) 이렇게 하면 안된다고요???
네, 예시로 그림속 함수도 누가봐도 도함수가 다른데 음함수+몫의 미분 때리면 도함수가 같게나오는 오류 뜸.
네이버 찾아봤는데, 함수를 결정짓는 요인이 소거돼서 오류뜨는 걸로 나오는 거 같아요.
근데 음함수 미분이랑 몫의 미분이랑 같이 믾이 한 것 같은데뭐지
y/x+x/y=3이나 y/x+x/y=7은 함수가 아니기 때문에 음함수 미분법을 적용할 수 없는 것 아닌가요? 음함수 미분법은 함수 y=f(x)의 관계이긴 하나 식을 정리하기가 어려워 g(x, y)=0와 같은 상황에서 도함수를 쉽게 구할 수 있는 방법인데, 주어진 두 관계식은 y=f(x)의 관계 자체가 성립하지 않아 음함수 미분법도 적용할 수 없는 것이 아닌가 싶습니다.
예를 들어 함수 y=x(x가 0이 아닌 실수)와 함수 y/x=1(x가 0이 아닌 실수)의 경우, 함수 y/x=1(x가 0이 아닌 실수)의 도함수를 구하기 위해 몫 미분과 음함수 미분법을 동시에 적용하면 결국 dy/dx=1을 얻을 수 있고 이것은 함수 y=x(x가 0이 아닌 실수)의 도함수 dy/dx=1와 일치하기 때문에 문제가 되지 않는 것 같습니다
이 문제에서, 마지막에 g'(t)를 음함수 몫의미분으로 풀었는데 안되더라고요 ㅠ 혹시 왜 안되는지 알려주실 수 있으시나요?
답은 95입니다...
우선 저는 정답이 15가 나왔습니다. 제가 놓치고 있는 것이 없다면 정답이 95인 것은 잘못되었습니다. 혹시 문제의 출처가 어떻게 되는지 여쭤봐도 괜찮으실까요? 풀이 과정은 다음과 같습니다.
f'(x)=-3x^2+2tx-t에서 p=[t+루트(t^2-3t)]/3이고 tan[g(t)]=f(p)/p이다.
t=4일 때 p=2이고 (sec[g(t)])^2=[pf'(p)-f(p)]/p^2*dp/dt에서 dp/dt=[1+(2t-3)/[2루트(t^2-3t)]]/3임을 활용해주면 g'(4)=3/20임을 확인할 수 있다.
따라서 100g'(4)의 값은 15이다.
음함수 정리 성립 여부 때문인가
그런것도 있음? 와
dy/dx둘다 y/x 나오는데
y를 x로 바꾸면 결국 다른 도함수가 나올거임
공유해주셔서 감사드립니다! 풀이를 다시 한 번 검토해보겠습니다.
음함수 미분법과 몫 미분을 함께 적용하여도 t=4일 때 p=2, dp/dt=3/4임을 확인할 때까지 같게 나왔습니다.
이후 g'(4)를 구하는 과정에서 차이가 있던 것 같은데 오늘 내로 풀이를 적어 공유드리겠습니다.
https://blog.naver.com/tablecalm/223612931234
확인해주시면 감사드리겠습니다! 제 실수가 있었습니다.
보통 다항함수 f(x)와 실수 p, t가 주어지고 p가 t에 대한 함수인 경우에 t에 대한 함수 f(p)를 t에 대해 미분할 때는 합성함수 미분법 (음함수 미분법, 역함수 미분법, 매개변수 미분법, ... 모두 본질적으로 The Chain Rule로 정리되는 같은 방법이라 알고 있습니다.) 에 따라 f'(p)에 dp/dt를 곱해주는 식으로 계산을 합니다.
그런데 이 문항에서의 계산은 그렇게 해결할 수 없습니다. f(x) 자체에 t가 포함되어 있기 때문에 f(p)를 단순히 t와 무관한 함수에 t에 대한 함수인 p가 합성된 꼴로 바라볼 수 없는 것입니다. 따라서 f(p) 식을 직접 펼쳐 t와 p를 확인한 후에, 때에 따라 곱미분을 적용해가며 f(p)의 t에 대한 도함수를 발견해 주어야 합니다.
저도 그문제 풀어봤는데 님 그거 같이쓰면 안되는게아니라요 f(p)가 아니라 f(p, t)즉 f(h(t), t)이기 때문임요 그래서 p에대해서만 미분하면 당연히 안됨요
음함수미분은 편미분처럼하는게 핵심인데 f(p)/p를 그냥 미분때리면 안에있는 t는 상수취급되잖아여 그래서 p에대해서 미분한번 t에대해서 미분한번 해야 제대로나옴요
f(p)가 아니라 f(p, t)즉 f(h(t), t)라는 말은 f(p)로 쓰면 안된다는 말이 아니라 f(p)는 걍 식일 뿐이지 함수로 쓰려면 f(p)가 아니에요 왜냐면 그건 p에 대한 함수가 아닐 수 있고 설령 p가 t에 대한 일대일함수라해도 자칫 식 안에 있는 t를 상수취급해버릴 수 있기 때문에 t에 대한 새로운 함수라해야 맞아요(p는 어차피 t에 대한 함수이니까)