Residual Finiteness
게시글 주소: https://orbi.kr/00069377875
Residually finite: For any nontrivial element $g\in G$, there is a subgroup $G_1$ of finite index in $G$ which does not contain $g$.
Locally extended residually finite (LERF): If for each finitely generated subgroup $H$ of $G$, for any element $g\in G - H$, there is a subgroup $G_1$ of finite index in $G$ which contains $H$ but not $g$.
Theorem A. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and covering group $G$. Then TFAE:
(1) $G$ is residually finite.
(2) If $C\subset\tilde{X}$ is a compact subset, then the projection map $\tilde{X}\to X$ factors through a finite covering $X_1$ of $X$ such that $C$ projects by a homeomorphism into $X_1$.
Theorem B. Let $X$ be a manifold possibly with boundary with a regular covering $\tilde{X}$ and a covering group $G$. Then TFAE:
(1) $G$ is LERF.
(2) Given a finitely generated subgroup $H$ of $G$ and a compact subset $C$ of $\tilde{X}/H$, there is a finite covering $X_1$ of $X$ such that the projection $\tilde{X}/H\to X$ factors through $X_1$ and $C$ projects homeomorphically into $X_1$.
위의 theorem B는 특히 중요한데, 만약 $\pi_1(M)$이 surface group $H$를 포함하고 있고, LERF라면, $M$이 virtually Haken임을 내포한다. 다시 말해서, surface group을 representing하는 immersed surface in $M$이 적절한 finite covering을 취하면, embedding으로 lift가 된다는 것.
자명하게 LERF는 RF보다 강한 조건이다. Theorem A,B는 LERF와 RF의 기하학적인 의미를 담고 있다. 보통 해석할 때, $\tilde{X}$는 universal cover를 염두해둔다. 이 경우, Residual finiteness는 다음과 같이 해석된다:
$\pi_1(X)$ is residually finite if and only if for every compact subset $C$ of $\tilde{X}$, there is some finite cover $X'\to X$ with $C$ projects homeomorphically.
만약 $X$에 어떤 geometric structure가 있다고 한다면, $X$의 sequence of finite covering $\tilde{X}_i$가 있어서, 점점더 그것의 universal cover $\tilde{X}$에 가까워진다, 수학적으로는 Gromov-Hausdorff converge한다고 볼 수 있다. Hyperbolic 3-manifold에서는 이것을 geometric convergence라고 부른다.
Examples
1. $M$: a Seifert fibered 3-manifold then $\pi_1(M)$ is LERF.
2. $M$: a hyperbolic 3-manifold then $\pi_1(M)$ is LERF. (Virtual Haken/Fibered Conjecture)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄴ 떨리네 ㅈ박을듯
-
고구마님이 올려주신 피뎊으로 하루에 1-2 지문 풀고 분석하고 애매한 선지나 해설...
-
우이꽁따이생들은 다 고만고만하게 생겼거든 위 짤은 수업끝나고 셔틀타러 가다가 찍힌거라카더라
-
오래되지 않은 최근의 생각이다.
-
내가 얼마나 공부를 못하는 사람인지 사람이 어디까지 추하고 천해질수 있는지 확실히 깨닫게 되는듯
-
다들 어디서 오시나오??
-
덕 코인 6
모으면 뭐가좋음? 기분이좋나?
-
자기 ㄷ 안자기 4
-
ㅈㄱㄴ
-
유럽이나 미국도 0
명예 통매 모욕 죄와 같은 법률이 있음? 없으면 우리나라는 어떤 근거로 만든거임?
-
ㅋㅋ
-
팜하니 4
-
아수라일지라도 이제 시작해서 3주정도 밀렸는데 따라잡으려면 어떤 식으로 계획을...
-
현 군수생입니다.. 아직 짬찌라 자대가면 평일엔 4시간, 주말에는 9시간 정도...
-
정오표에도 해설강의에도 언급이 없어서 환장하겟네요 1에서 함숫값 0이고 미계 6인데...
-
EU에서도 일할 수 있고 어느 정도 머리만 있고 영어 잘한다면 충분히 해볼 만 할...
-
아이고야 4
도망가야지
우익수