Curl-Div
게시글 주소: https://orbi.kr/00069376678
Curl-Divergence lemma라고 함수열의 수렴에 대해서 이야기 하는데 희한하게도 Curl과 Divergence에 bound를 주는 것을 가정으로 하고 있다. 직관적으로 이게 어떻게 연관되어 있는지 잘 와닿지 않는데, 일단 statement 먼저 보자.
The Curl-Div lemma. Suppose $u_m\rightharpoonup u, v_m\rightharpoonup v$ weakly in $L^2(\Omega;\Bbb R^3)$ on a domain $\Omega\subset\Bbb R^3$ while the sequences $\operatorname{div} u_m$ and $\operatorname{curl} v_m$ are relatively compact in $H^{-1}(\Omega)$. Then for any $\varphi\in C^\infty_0(\Omega)$ we have
$$\int_{\Omega}u_m\cdot v_m\varphi dx\to\int_{\Omega}u\cdot v\varphi dx$$
as $m\to\infty$.
여기서 나오는 $\cdot$ 은 Euclidean space에서의 내적을 의미한다. Statement의 의미를 다시 말하면, 미분에 bound를 줘서 nonlinear expression 의 weak continuity를 얻어내는 것이다.
이걸 differential form의 언어로 바꿔서 표현을 하기 시작하면, 이 curl과 div에 boundness 조건을 주는 것이 weak convergence에 어떤 영향을 주는지 좀 더 직관적으로 드러난다.
$M$을 closed oriented smooth $n$-manifold라고 하자. 이제 $u_m\rightharpoonup u, v_m\rightharpoonup v$ in $L^2$ such that $(d^* u_m), (dv_m)$ 들이 $H^{-1}$에서 relatively compact라고 하자. 이 조건은 위의 Curl-Div lemma에서 Curl과 Div의 relative compactness와 대응된다. $u_m, v_m$을 $u_m - u, v_m - v$로 바꿔서, $u = 0, v = 0$으로 가정할 수 있다. 그러면 Hodge decomp.에 의해,
$$u_m = da_m + d^* b_m + c_m,$$
$$v_m = df_m + d^* g_m + h_m,$$
where $c_m,h_m$ are harmonic 1-forms and $a_m \rightharpoonup 0, b_m \rightharpoonup 0, f_m \rightharpoonup 0, g_m \rightharpoonup 0$ in $W^{1.2}(M)$, $c_m \rightharpoonup 0, h_m \rightharpoonup 0$ in $L^2(M)$ 이런 것을 얻을 수 있다.
Hodge decomp.의 consequence중 하나가 $M$위에서의 space of harmonic 1-form들의 공간은 locally compact이다. 따라서, smooth하게 $c_m \to 0$, $h_m \to 0$ 된다. 또한 가정에 의해서 $\Delta a_m = d^* u_m, \Delta g_m = dv_m$이 $H^{-1}$에서 relatively compact이기 때문에, $(da_m),(d^* g_m)$은 $L^2$에서 precompact하게 들어가있다. 따라서,
$$u_m = d^* b_m + o(1),\quad v_m = df_m + o(1),$$
in $L^2$가 된다. 또한,
$$\langle u_m,v_m\rangle_g \omega_g = \ast (\langle d^*b_m, df_m\rangle_g) = (d\ast b_m)\wedge df_m = d((\ast b_m)\wedge df_m),$$
임을 알 수 있다. 여기가 그 "미분"의 모습이 드러나는 핵심적인 부분이다.
구체적으로 말하진 않겠지만, Rellich theorem 이라는 것이 있는데, 이것은 $b_m\to 0$ in $L^2$임을 imply한다. 따라서
$$\int_M \langle u_m,v_m\rangle_g\varphi\omega_g = \int_M d((\ast b_m)\wedge df_m)\varphi + o(1) = (-1)^n \int_M (\ast b_m)\wedge df_m\wedge d\varphi + o(1) = o(1).$$
따라서 앞선 Curl-Div lemma와 같은 결론을 낸다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거사면되나요?
-
꿈꾸는 자
-
돌리면 백분위 93이라 뚝 떨어지는 거 열받는데 물2 2등급 블랭크는 수능 때였지...
-
정작행복해지니까 기분이참이상하더라
-
상상 모의고사 0
상상 모고 온라인용 시즌3 3차 풀어보신분 있음...? ㅈㄴ 어려운데??? 1컷...
-
아 방송 마렵다 1
악질 채팅 보내고 싶어서 미치겠어
-
왠지 신입생 왔을까 여기 저기 둘러보아도 비어있는 언기도~만 저기 경비원 아저씨 . . .
-
강평 개높네 9
스카에서 잘생긴 사람(나)가 듣고있음 ㄷㄷㄷㄷㄷㄷㄷㄷㄷ
-
키센스 사야지 0
션티 제 1등급좀 지켜주세요
-
1학년 4.73 2학년 1학기 4.75, 2학기 3점대 초반(예상) 3학년 1학기...
-
우리가 아는 정적분의 정의는 사실 미적분학의 기본정리입니다… 그걸 정적분의 정의로...
-
지금 고2인데 언매 화작 중에 고민중이거든요 표점 보고 언매 선택하는건 너무 오만한...
-
분리변표낼거였으면 사탐에 가산점도 안줬겠지
-
어떤 f(x) = g(x)라는 항등식을 부정적분하면 F(x) = G(x) + C가...
-
첫번째는 x->0에 다가 가니까 0의 우극한, 좌극한 해서 수렴하는 y=3인건...
-
실수없었어도 42정도였을거같은데 엄.
-
수학 공부 효율 3
엔제 풀면 원래 이래 시간 훅훅 감? 효율성 문제 있는거 같음 ;;
-
42점에서 막힘 이거 어캐해야함? 수능특강만 풀고 바로 들어감
첫번째 댓글의 주인공이 되어보세요.