항등식을 적분하면 항등식인가요?
게시글 주소: https://orbi.kr/00069372663
어떤 f(x) = g(x)라는 항등식을 부정적분하면 F(x) = G(x) + C가 될텐데 이 식도 여전히 모든 x에 대해 성립하는 항등식인가요?
그리고 여기서 C값은 적분상수니까 정해져 있는 값으로 봐야하는 건가요?
제 고민은 F와 G를 구간에 따라 C값을 다르게 정의하면 안되는 건가요? 그러니까
F(x) = G(x) + 2 (0 < x <= 2)
F(x) = G(x) + 4 (2 < x <= 4)이런 식으로 정의해도 여전히 F,G의 도함수인 f,g는 같으니까 상관없는 거 아닌가요?? ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사탐런하면 불이익이 크진 않을까요? 꼭 공대나 컴공 가고 싶은데 사탐 때문에 문제 생기진 않나요?
-
나왜 안당했지
-
대구사람입니다.
-
활동 4일만에 저격먹고 심지어 하나는 념글감 ㅎㅎ
-
사탐으로 학부가서 설공가는것도 가능한거임?
-
다들 오랜만이어요ㅎㅁㅎ
-
강기원 스1 0
강기원쌤 미적 스1 언제 끝나는지 아시는 분 있나여?ㅠㅠ
-
금테두리 가지고싶습니다
-
제가 입결표 볼줄은 모르는데 혈육한테 보여줬더니 (혈육 의대 21학번) 예전보다...
-
중앙대 에타 빌려주실 분 계신가요... 재가입이슈때문에.....제발요 눈팅만 할게요ㅠㅠㅠㅠㅜ
-
오늘먹은것 11
국밥과 막걸리 트렌디한 mz푸드
-
이미 체화한 일관된 풀이로 풀어주는 강의는 재미없고 지루하고 내 일관된 풀이에서...
-
상위권 최상위권 할거없이 모두 탈주함->6모 끝->예상 1컷이 43?->꿀통냄새맡고...
-
언제외우지
-
진작 말하지 ㅋㅋㅋㅋ 아니,, 내가 진작 설명을 잘 읽어봤어야하는구낭 히히 먄
-
진짜미치겠음 이틀째아무것도안함
-
씹련들 탕수육 ㅈㄴ 어렵노
-
오늘 봤는데 내가 뭐가 그렇게 싫었지..? 게시글 쓴 것도 얼마 없는데
-
딱대
-
재수하면서 스카에서 공부하고 있는데 제 옆자리분께서 많이 산만하시더라구요 1....
-
미적 파데,킥오프 수2아디어 듣는중인데 진짜 너무 좋네요…..말로 형용할수없음...
-
화1하고싶다 3
지1 노잼임
-
하늘의 기운이 돕길 바라며 오늘도 선업스택 +1 했다
-
3,4 등급 대상으로 할건데 수학 폼 다 죽음 걍 과외 해도 되려나.. 요즘 다시...
-
엠창 20세 개백수생활하다가 여동생에 의해 여중딩으로 TS되어버리고싶엉~~♡
-
수면 6시간 식사 5시간 공부 13시간 이 정도면 상타치겠지 ㅎㅎ
-
남들 레어 NTR해야지 흐헤헤헤
-
역시 야구선수들 하체가 지리네요
-
애초에 나만이 가질수있는 유일한거 아니었음??? 저기에도 써있잖아 단한명이 가질수있는거라고
-
우웅....
-
좋꿈꾸 2
-
제 상황에서 ㄱㅊ을까요? 확통사탐이고 국어 1 영어1-2 나옴 두과목 다 2등급...
-
미적 너무 재맜어서 수학만 하는데 큰일이네 이거
-
항상지쳐있고다크서클이빠지지않는n수생의시간이다
-
맞팔구 9
날이면 날마다 오는게 아니에요~
-
계속 웃고 너무 재미ㅛ긴 했는데 피곤해서 주글 것 같음 에너지 부족..
-
이쯤에서 한번 쉴 때도 됐죠
-
차피 기출은 다시 볼꺼니깐..
-
컴팩트하면서 먼가 유베이스들이 놓칠만한 내용만 집어주는사문 개념(?) 강좌가...
-
내 노후를 책임져줘
-
요망한 지2련
-
영어는 계속 3등급만 나오고 이번에 수능 제대로 공부해보려고 합니다. 1. 보통...
-
매국노 등장 1
오늘도 외화 유출 중
-
하루에 6시간 수업이지만 힘내자..
-
으ㅇㅓㅊㅡㅟ한닥 5
홈런볼에 취한다 왤케 맛남
-
보통 학종에서 11
생기부와 직접적인 연관이 없어도 붙을수도 있나요...? 예를들면 컴공 생기부인데...
-
아니,,, 장난하지말고,,, 레어진짜 남한테서 뺐는거임??? 9
레어 관련글썼는데 하나같이 다들 합동해서 장난치는거같넼ㅋㅋㅋㄷㅋ 막 뺐는거 아니죠??? 그죠???
-
이거 ㄹㅇ임
네 맞습니다
사실 부정적분이 상수 차이만큼만 난다면 미분계수가 모든 점에서 같다는 건 자명하죠
부정적분일때만 성립함
사실 항등식이면 f=f 느낌인거라
적분해도 같죠
상관없긴한데요
그럼 F, G도 구간에 따라 달라져야해요
간단하게
f = g = 2x
F = x^2 + 1 라 했을때
G = x^2 +3 이면 C = -2고
G = x^2 +1 이면 C = 0이겠죠
위는 그냥 F, G를 형식상의 표현으로 봤을때 얘기고
문제 조건에 따라 만약 F, G를 미분가능한 함수로 봐야 한다면 F, G가 매끄러운 연속함수가 되게끔 상수 C를 맞춰야겠죠
그래서 일반적으로는 저렇게 상수 C가 구간에 따라 다르게 정의되는 경우는 문제에서 많이 못 본 것 같아요
그러면 질문하나만 드려도 될까요?
f'(x+p) = f'(x)라고 하면
양변을 적분하면 f(x+p) = f(x) + q라고 쓸 수 있을 텐데, 정확하게 하면 이 q값이 일정하지 않을 수가 있기 때문에 함수가 p만큼 반복되면서 y축으로 q만큼 일정하게 평행이동된다고 할 순 없는거죠?
문제에서는 일정하도록 조건을 주겠지만요..
f'이 정의되었으니 일단 f는 미분가능한 매끄러운 함수네요
그러면 크기가 p인 어떤 구간에서 f를 관찰한다고 생각해보죠
가장 쉬운 예시로 [0, p] 인 구간을 생각해도 괜찮아요(p가 양수일때) 그러면 [p, 2p]일때 f는 [0, p]의 f를 x축으로 p만큼 y축으로 q만큼 평행이동한거잖아요? 만약 이때 [p, 2p] 범위내에서 q가 다르다면 무조건 불연속이기때문에 q는 일정한 값일수밖에 없고 그건 q = f(p) - f(0) 일거에요.
이때 중요한건 개형이 완전히 똑같기 때문에 [2p, 3p]에서도 q = f(2p) - f(p) = f(p) - f(0) 으로 같을거고 연쇄적으로 반복되니 q는 무조건 일정한 수여야합니다
장황하게 얘기했지만 그냥 간단하게 말하면
a를 임의의 실수라 할때
a를 포함하는 어떤 열린구간에서
f(x+p) = f(x) + n (x <= a)
f(x+p) = f(x) + m (x > a)
라고 했을때
첫번째 식에 a를 대입(혹은 좌극한)하면
f(a+p) = f(a) + n
두번째 식에 a의 우극한을 취하면
f(a+p) = f(a) + m
가 됩니다. 이게 가능한 이유는 f(x)가 실수전체에서 미분가능한 함수이기 때문이죠
이때 두식의 양변을 빼주면
0 = n - m 이 됩니다.
즉 n = m입니다.
그래서 q는 단 하나의 수로밖에 정의될수 없습니다
ㅋㅋㅋ 저도 답글 쓴 다음에 오늘 아침에 생각해 보니까 f'에서 함숫값이 다 정의가 되니까 f는 미분가능한 함수고 그러니까 f는 연속함수더라구요. 그래서 p만큼씩 그래프 개형은 똑같으면서 연속이려면 q값이 하나로 나올 수 밖에 없더라구요.. 감사합니다..!!