어떤 곱함수가 미분가능하다고 해서 그 함수를 미분해서 도함수를 구할 순 없는거죠?
게시글 주소: https://orbi.kr/00069316922
h(x) = f(x)*g(x)(g(x)는 x=1에서 미분 불가능)이라고 했을 때 h(x)가 미분가능하다고 해서 양변을 미분해서 도함수 식을 써낼 순 없는거죠? f(x)*g(x)는 미분가능한 함수이긴 하지만 미분해서 도함수 식을 쓰려면 g(x)가 미분가능한 함수여야 하니까요?? 맞나요??
또 x=1을 제외한 곳에서는 미분한 식도(도함수의 식들도)성립하게 되는 건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 모쏠아님 0
이미 니지카랑 결혼해버려서
-
갈라면 어케해야댐 확통사탐으로 수학백분위 마지노선이 몇이에요? 국어 백분위98이고...
-
장점이 없는 삶 1
-
흑석반수생 1
갑자기 생각남
-
다들건강해랑
-
전 키빼몸 120 찍음 생담 쌤들도 막 정수기에서 물 마시는거보고 너무 말랐다하고...
-
의뱃 ㅈㄴ많아짐
-
아키하바라보다좋다!
-
다별로임
-
성인 되서 안해봤다고 모솔이러면 저같은 진짜 모솔은 슬퍼합니다....
-
연애 안해봤는데 연애가 뭔줄 알고 하고 싶다는고임 연애가 뭐임??
-
안녕하세요 5
레전드 굇수입니다 내일 보죠
-
자려고 하는데 위에집에서 ㅈㄴ쿵쿵대면서 싸우는 소리 들림 3
자긴글렀다 과외숙제나한다
-
댓글 하나씩 남겨주면 5명 단위로 묶어서 추첨 한명만 연인 당첨 결과는 당첨자에게 대댓
-
어짜피 연애 못하는거 아니까 그냥 어떤 기분일지 상상하는거지 연애를 하는건,사랑을...
-
고백하나함 6
사실 나 성격이 좀 많이 안좋음
-
명문대 의치한약수 .. 옯평 개높아서 벽을 느끼고 공부하러 가겠읍니다..
-
어떤 이미지든 환영이야
-
다들 굿밤굿밤 3
내일까지만 공부 하면 일요일은 좀 쉬어갈듯 다들 화이팅해요 사랑합니다
-
아 모르겠고 빨리 12화 내놔~~~~~~~!!!!!!!
-
잔다. 2
자라. 캬캬.
-
25살 여자이고 어떤 선택을 해야할 지 모르겠어서 조언을 구해봅니다 코로나 시국에...
-
피아노 어렵다 0
양손 연주 못하겠어
-
남자라서 과외 입구컷 당해본분?
-
이름 뭐로 바꾸지 13
도로시로 갈아탈까
-
잠 8
따
-
프사 추천받아요 12
강평 누군가가 따라해서 전 다른걸로 해야겠어요 댓글로 사진 ㄱㄱㄱ
-
잠 4
ㅇㅇ
-
원래는 시급 높아도 잘 구해졌는데 요샌 내려도 잘 안 구해지네 학벌 실력 딱히...
-
난 모쏠임 18
하자가있어서그럼
-
프사변경완료 5
다시 민지단 복귀
-
운동 하루에 30분 러닝이라도 뛰셈 생각보다 몸이 많이 안좋아지더라 건강이 최우선임
-
다시 예전처럼 하자 다시는 오늘처럼 살지 않으리
-
수시러 최저 맞추는 친구가 과탐하다 사문 듣는데 ㄹㅇ 그냥 재밌는 유튜브보는느낌?...
-
남들과 다른 길을 걷는다
-
3차긴한데 mri까지 찍었는데 다른 개인병원에서는 만져보고 바로 뭔지 알더라.....
-
고1때 두명 썸탔고 한명은 학기초에 소개받았었는데 연락을 서로 먼저안해서 자연스럽게...
-
질문좀해주셈 0
ㅇㅇ...
-
전독시 실사화되더라 11
유튜브에서 예고편봤는데 그거가 실사화가 가능한가 근데
-
.
-
자고일어나서마저할수도
-
걍 예쁘잖아
-
용기내서 그녀에게 데이트신청 해볼까
-
애니프사의 효능 4
성적이 오른다←이거 ㄹㅇ임
-
나의 세상이 무너졌어 ㅠㅠ 나만 진심이었어
-
https://orbi.kr/00072144208/%EC%9D%B4%EA%B1%B0%...
-
이미지를 그려주기임뇨 16
심심해서 자기 전까지 선착순으로 그려드림뇨 잘 모르는 분은 첫인상을 제 맘대로 그릴거에요
-
공부 ㅈㄴ 잘할거같긴함
-
그래도 아직까진 한국사회에서 낫베드죠?
-
받는 영상 있었던거 같은데 그때는 그사람이 걍 고능해서 그런거지라 생각했었는데...
곱함수 미분가능성 전제가 각각 함수가 실전미가일때를 가정하고 쓰는거니깐 함부로 쓸 수없는건 맞죠
하지만 1가지 반례정도를 제외하면 걍 미분법으로 도함수 구하고 극한취해도 같아서 상관은 ㅇ없어요
엄밀히는 안되긴 하는데
수능수준에서 도함수 불연속을 내진 않아서 상관없음뇨
1. 제목은 yes
2. 미분법의 적용은 "함수가 미분가능함"을 전제로 함
본문에서 예시로 든 걸로 얘기해보면 h(x)=f(x)g(x)가 실수 전체의 집합에서 미분가능할 때 h'(x)=(fg)'의 정의역은 실수 전체의 집합이지만 f'(x)g(x)+f(x)g'(x)의 정의역은 실수 전체가 아니라서 미분법을 함부로 적용하면 안돠고 두 함수 (fg)'와 f'g+fg'는 다른 함수가 됨
g가 미분가능하지 않은 점이 있기 때문
(0×(정의안됨)=(실수)가 아니라 (정의안됨)임)
f(x)=x g(x)=|x| 생각해보면 괜찮을듯
답글 달아주신 분들 항상 감사드려요