롤의 정리 증명 질문입니다.
게시글 주소: https://orbi.kr/00069283403
증명 중에 상수함수가 아닌 경우를 증명하는 과정에서 f(x) 가 c에서 미분가능하므로 좌극한과 우극한이 같아야 한다고 하는데
이렇게 되는 경우에서는 어떤 점에서 미분가능해도 좌극한과 우극한이 다르지 않나요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
출출~허이
-
이거 갈수록 어려워져요? 1회차가 생각보다 풀만한데 뒤로 가면 겁나 어려워지는건지..
-
후회 하고있어요
-
존나아파
-
복습까지하면 국영수할시간이 남나
-
안녕 0
안녕
-
정보 4대 2로 이김 파머 포트트릭 그냥 그렇다구요 신나서 적어봤어요 잘께요
-
물지물지
-
3회는 워낙 쉬워서 주요 문항만 할게요 10번 : 분자가 2차로 0으로 가야겠죠...
-
21회 개빡세네..
-
성공적으로 정착한 사람 김준 말고 또 있나요?
-
그렇지만 언어의 변화는 무쌍하기에 불규칙하게 변하는 것입니다. 그렇지만 이...
-
N제 풀다보면 느긋해지고 시간제약도 없어져서 뇌가 여유로워짐 수능자체가...
-
러 불규칙'이란 어미 '-어'가 '르'로 끝난 어간 뒤에서 '-러'로 바뀌는...
-
나도 오르비에서 귀여움받는 포지션이고 싶다..
-
어떤문제가 어려웠나요?
-
뭔가 선택 과목 없이 푼다는게 아깝다는 느낌이...ㅜ.ㅜ 혹시 풀어보신분들 만약...
-
더프야 빨리와라 0
내일 학교에서 풀어야한단 말이야
무슨 좌극한 우극한? f'의 극한? f의 극한?
f’ 입니다. 빼먹었네요
f'의 극한이 어디서나옴
미분가능하니까 도함수연속이다 여기서나온거?
롤의 정리 증명 중 상수가 아닌 경우 중에서
함수 f가 c에서 최댓값 f(c) 를 갖는다면
h>0- f(c+h)-f(c) / h >=0, h>0+ f(c+h)-f(c) / h <=0
여기서 함수 f 가 c에서 미분가능하므로 좌극한과 우극한이 같아야 한다
여기서 위 함수 중 c=0 인 경우를 생각하면 좌극한과 우극한이 같아야 한다는 것은 틀린 말이 아닌가요?
1. "f가 미분가능하다"랑 "f'의 x=a에서의 극한이 존재한다"는 다른 말임
전자는 f'이 x=a에서 정의되어 있다는 말이고 이 둘을 합쳐야 f'이 연속이다가 나오는 거지 둘이 관련없음
2. 롤의 정리는 함수의 미분가능성을 전제로 하지 도함수극한의 존재성을 전제로 하지 않음
당연히 증명에서도 미분가능함을 이용하지 도함수극한이 존재하는 걸 이용하지 않음
https://orbi.kr/00067681966
이거도 참고해보시고
감사합니다. 이해됐습니다 :)
미분가능이 도함수가 연속하다는 뜻이 아니에용
그런데 롤의 정리 증명에 미분가능->도함수 연속을 이용해서 증명했다는 말 아니에요?
롤의 정리 증명에 도함수 연속성 이용 안되는디
전 잘 모르는데 본문 내용이 그런 말 아니냐는 뜻이었어요