2021연논 질문 하나만 해도 될까여
게시글 주소: https://orbi.kr/00069046060
3-2 해설에 일반성을 잃지 않고 사각형이 탑처럼 쌓여 올려져 있는 첫번째 그림 형태를 가정하고 풀이하는데, 아래 그림도 포함된 풀이인지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내일1교신데 4
이번학기첫자체휴강각인가
-
왜 아빠가 더 노력하지 않는걸까..
-
[13/15문제] 5번 밀도는 심층으로 갈수록 지속적으로 증가한다는 것도 숙지 못함...
-
내 꿈은 3
롤드컵 우승임 반농담 반진담임
-
가능한가 아무 매력이 없으면 친구가 안될거고 매력이 있으면 둘중하나는 언젠가 좋아하게 되지않을까
-
손좀들어봐라이
-
엔비엔비야... 4
이 개새끼야
-
미쳤나봐 4
딸기를 다른 걸로 봤어
-
5n살이 19살이랑 썸타는 내용이 나오던데 그럼 내가 8살이랑.. 똑같은건가
-
반박시난봉꾼
-
가족이랑 트러블 많았던거 빼고 고등학교 이후로 그래도 인복은 있었던것같긴 한데...
-
dolphin climbing a mountain 이었음?
-
ㅇㅇ
-
땅울림할게요 7
민족말살정책
-
오늘 일 클래스 1주차 강의 듣고있는데 "이정도는 다 되잖아" "당연히 이거지"...
-
올해 두 번째로 덮치는거에요?
-
아 뭔가 좀 좆된듯 11
타이레놀 먹어도 열이 안 내림 낼 아침에 바로 병원 가야지
-
지금은 요리가 취미인 의사가 되고싶어
-
B의 Ep랑 Ek랑 비율 관계가 10대 2고, B와 A 질량비 2대 3이니까 A...
-
1) 코구선수 2) 자택경비원
-
28예비 18번 같은거는 f-x가 g-x로 나누어떨어지는걸 눈치까라는말인데 그럼...
-
감기인가 코로나인가 구분이 안 가네 학원 일 할 땐 마스크 끼긴 했는데 아 설마
-
텐서 뭔데 대체 9
텐서라는게 뭐임 대체
-
5년전 메타가 40분/25분 이고 맞나연?
-
60개국 특징이랑 위치 외우고 우리나라 40개 지역 특징 외우는데 사탐런으로...
-
사람들이 커뮤나 sns만 보면 만족을 못함 ㅅㅂ 예전에 로입 관심있어서 찾아보는데...
-
국현 국어 0
님들 국현 이라는 국어 강사 하시는 분 있을까요? 푸는 방법도 특이하고 흔히...
-
OZ베이직모 Lv.2 2회 [14/15문제] 3페이지가 어려워보여서 숨이 턱...
-
원래 현생처럼 무난한 이미지를 추구해와서 그런것도 있지만 요즘 너무 옯찐따된듯
-
6시까지 달린다
-
외적이 두개지요 1
뭔데 이건 어따 쓰는데
-
국어76-(2) 백분위 94.4 전교68등 수학66-(3) 백분위 79.6...
-
모고 풀면 항상 문학은 기초가 부족해서 (필수어휘 잘 모름,해석 느림••• )...
-
서울대 목표 반수인데 10
학점망해가는거 같아서 그냥 깔끔하게 버리고 수능공부 해가지고 깔끔하게 내년에 서울대...
-
재밌는 조건 많음
-
혹시 덮날임? 1
새르비 죽었노
-
응용학부는 0
뭐 배움? 수학과 응용수학과 화학과 응용화학과 물리학과 응용물리학과 뭔 차이임?
-
ㅈㄱㄴ
-
OZ베이직모고 Lv2. 1회 [13/15문제] 역시 첫트만에 다 맞는 기적은 제...
-
전공 하나 남음 0
나머지 다 정리 끝남 근데 남은 하나가 C++임 자살 마려움
-
D-8...ㅇㅈ 1
ㅠㅠ
-
애니보고싶다 5
그치만 공부 계속 해야겟죠... 응..
-
잘자요 9
-
체육선생님인가요
-
3모 3 극초반 0
선택 기하 6,14,15,21,22,28,29,30 틀인데 (기하 27에서 문자...
-
이해원 수1을 풀다 이해원 수2를 풀다 트러스 미적을 풀다 시대기출 미적을 풀다
-
전공 ㅈ도 쓸모 없음 깃허브 open ai로 남들이 만들어놓은 key , code...
-
1~7편까지 쭉 달림뇨 자고일어나서 1기 끝내야겠다
-
아오졸려 0
하루에 전공시험 3개 볼 위험에 처햇음;
-
공동교육과정에 대해 자세하게 설명해주실 분 계신가요? 4
내신을 화생지했는데, 제가 공대가 너무 가고 싶어서 생기부 과세특 다 공학으로...
저도예전에 질문해봤는데 돌리면 똑같아요.
직각삼각형이나오는게 의문이였는데 임의의삼각형으로 논하는거여서 사실상 위의 경우만 논해도 충분해요.
음.. 어렵네용
이렇게생각하면되요. 하나를 고정시키잖아요.
그러면 아래삼각형은 일단무시하세요.
그러면 특수한상황 일반적인상황으로 나누어져요
그러니 두개다논할이유가없죠
3-1 풀어보시면, 직사각형 PQRS의 변이 변AB, 변BC, 변AC 위에 있을 수 있기 때문에 세가지 삼각형이 나오는데, 세가지 경우 모두 공유하는 변의 길이가 1/2k (단, k=변AB or k=변BC or k=변AC) 일 때 동일한 최댓값을 가짐을 알게 되실 겁니다.
따라서 직사각형 P'Q'R'S' 를 첫번째 그림처럼 잡든 두번째 그림처럼 잡든 결과는 동일하므로, 편한 첫번째 경우로 푸는 것입니다.
그리고 사실 이런 연결형 문제는 대놓고 3-1 결과를 이용하라는 거여서...
자세한 설명 감사합니다. 좀 더 생각해봐야겠습니다 :)
3-1 풀이까지 적다가 해결하셨을 거라 생각해 지웠습니다.
그림과 같이 S=(a*l)/2 일 때 최댓값을 가지는데,
ㄱ, ㄴ, ㄷ 세가지 경우 모두 같은 삼각형이기 때문에 당연히 넓이 역시 동일하므로
a*l = b*m = c*n 이 성립합니다.
따라서 I 의 탑처럼 쌓인 경우와 II 의 경우 둘 다 같은 넓이이기 때문에 굳이 II 의 경우를 고려하지 않아도 되는 것입니다.
친절한 해설 정말 감사합니다 이해됐습니다 !! :)
설명을 너무 못했는데 이해하셨다니 다행이네요...
다시 보니 S=(a*l)/2이 아니라 (a*l)/4인데 잘못 적었네요 ㅋㅋ
ㄱ 의 경우 S = (a*l)/4
ㄴ 의 경우 S = (b*m)/4
ㄷ 의 경우 S = (c*m)/4
일 때 최대인데
a*l = b*m = c*n 이므로 세 PQRS 전부 같은 넓이라는 것을 말씀드리고 싶었는데 너무 대충 넘어간 것 같습니다..
그림처럼 P’Q’R’S’ 를 설정하는 과정이 다르고 넓이를 구하는 과정이랑 개념 자체가 달라고 결과적으로 넓이가 같다면 일반성을 잃지 않는다는 말씀이신가요??
아 죄송합니다. 어떤 부분이 궁금하신 건지도 모르고 다른 부분을 설명하고 있었네요...
계산해보면 그림의 2번의 경우 x = 1일 때
즉, 삼각형 ABC가 직각삼각형일 때 최댓값 (a*l)/3 을 가지는 것을 알 수 있는데,
돌려보면 결국 1번과 동일한 상황이라 그렇습니다.
정성스럽게 답변해주셔서 정말감사합니다!!
시간날때마다 고민하고 있었는데
덕분에 이해됐습니다. 감사합니다!!