2021연논 질문 하나만 해도 될까여
게시글 주소: https://orbi.kr/00069046060
3-2 해설에 일반성을 잃지 않고 사각형이 탑처럼 쌓여 올려져 있는 첫번째 그림 형태를 가정하고 풀이하는데, 아래 그림도 포함된 풀이인지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
역시 미루고 미루다가 마감 몇시간 전에 밤새는게 가장 효율이 좋아
-
능지 시발
-
3월부터 할건데 작수 3등급이고 수학만 좀 파서 1찍고 시작하고싶은데 국어 비문학...
-
삼성 엘도라도 듣기 기력 충전 완료 나 고양이인데 야구 보고 싶다 빨리 시작해라
-
오야스미 2
네루!
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
진짜 답이 없네
-
ㅂㅂㅂ 레알16강 축하드려요
-
사인 : 정기점검
-
아이고야 0
김새론씨가 돌아가신 날이 김수현씨 생일이라네요
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
가 있었다면 진작에 저세상 갔겠지
-
기차지나간당 2
부지런행
-
현역 (생,지 순서로) 6모 34 9모 23 수능 12 재수 6모 13 9모 12...
-
mlb the show 24 ㄱㄱ
-
잘시간 됐다 2
-
음바페 골 0
시발 어휴
-
8시간 잤다 2
얼굴이 번들번들
-
존맛이지
-
ㅈㅂㅈㅂ
-
아 아무리봐도 저거 A가 리보솜이라는 게 이해가 안되는데 설명해주실 분..?? ㅠㅠ
-
바이 바이 바이시클
-
헐
-
네이버 프로필이 생겻어요 ㅎ.ㅎ
-
급 피곤, 5
ㅍ퓨퓨
-
머지 0
누가 내 커피 를 훔쳐 갓 네
-
알바하고 여행가고 집 어느정도 잘살고 하는애들 보면 부러움 분명 대학은 내가 더...
-
이거 닮음의 종류 10
귀찮다.
-
응급실 고칠게 the name 그대를 사랑하는 10가지 이유 천상연 바보에게 바보가...
-
곧 새르비도 못하겠군 15
나를 잊지말아줘 ㅜㅜ
-
어느날 말없이 떠나간대도 그뒷모 습까지도 사랑할래에
-
재밋겟다
-
다 성격보고 도망침
-
도화지가 없어도 0
그림을 그린다
-
난 잠시 그녈지켜줄뿐야 아무것도 바라는 것 없기에 그걸로도 감사해 워어
-
오르비 잘 자! 7
좋은 꿈 꾸기
-
근데 안자는 것 같음
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
https://orbi.kr/00016460498...
-
헤드셋 꺼놧다가 깜빡햇다 ㅋㅋ.
-
보컬 학원 다니기 본인 2년 좀 넘게 배우고 바리톤 이 새낀 고음 뚫기 존나...
-
266일금방이지 3
응
-
뭐가 더 나앗을지 모르겟다, 달리기로 멀 엮으려하면 다 별로다
-
쌩라이브는 대부분이 한음 내려서 부르던데 그럼 나도 노래방에서 2키 내려도 되는거자나
-
아직도 안 갓다 레전드 게으름
-
mnm 맛잇다 0
나의 아침
-
예전에 보낸거지우려는데..
-
셀레스티얼 > 사평우 > 어피니티 > 심심한 > 달리기선수
-
아까분명 싸이버거에소떡소떡에초밥먹고싶다썻는데 동태탕에 흰쌀밥먹고싶더니 이젠 레몬아이스티 마시고 싶음
-
정말 짜릿하다카피 닌자 셀레스티얼
저도예전에 질문해봤는데 돌리면 똑같아요.
직각삼각형이나오는게 의문이였는데 임의의삼각형으로 논하는거여서 사실상 위의 경우만 논해도 충분해요.
음.. 어렵네용
이렇게생각하면되요. 하나를 고정시키잖아요.
그러면 아래삼각형은 일단무시하세요.
그러면 특수한상황 일반적인상황으로 나누어져요
그러니 두개다논할이유가없죠
3-1 풀어보시면, 직사각형 PQRS의 변이 변AB, 변BC, 변AC 위에 있을 수 있기 때문에 세가지 삼각형이 나오는데, 세가지 경우 모두 공유하는 변의 길이가 1/2k (단, k=변AB or k=변BC or k=변AC) 일 때 동일한 최댓값을 가짐을 알게 되실 겁니다.
따라서 직사각형 P'Q'R'S' 를 첫번째 그림처럼 잡든 두번째 그림처럼 잡든 결과는 동일하므로, 편한 첫번째 경우로 푸는 것입니다.
그리고 사실 이런 연결형 문제는 대놓고 3-1 결과를 이용하라는 거여서...
자세한 설명 감사합니다. 좀 더 생각해봐야겠습니다 :)
3-1 풀이까지 적다가 해결하셨을 거라 생각해 지웠습니다.
그림과 같이 S=(a*l)/2 일 때 최댓값을 가지는데,
ㄱ, ㄴ, ㄷ 세가지 경우 모두 같은 삼각형이기 때문에 당연히 넓이 역시 동일하므로
a*l = b*m = c*n 이 성립합니다.
따라서 I 의 탑처럼 쌓인 경우와 II 의 경우 둘 다 같은 넓이이기 때문에 굳이 II 의 경우를 고려하지 않아도 되는 것입니다.
친절한 해설 정말 감사합니다 이해됐습니다 !! :)
설명을 너무 못했는데 이해하셨다니 다행이네요...
다시 보니 S=(a*l)/2이 아니라 (a*l)/4인데 잘못 적었네요 ㅋㅋ
ㄱ 의 경우 S = (a*l)/4
ㄴ 의 경우 S = (b*m)/4
ㄷ 의 경우 S = (c*m)/4
일 때 최대인데
a*l = b*m = c*n 이므로 세 PQRS 전부 같은 넓이라는 것을 말씀드리고 싶었는데 너무 대충 넘어간 것 같습니다..
그림처럼 P’Q’R’S’ 를 설정하는 과정이 다르고 넓이를 구하는 과정이랑 개념 자체가 달라고 결과적으로 넓이가 같다면 일반성을 잃지 않는다는 말씀이신가요??
아 죄송합니다. 어떤 부분이 궁금하신 건지도 모르고 다른 부분을 설명하고 있었네요...
계산해보면 그림의 2번의 경우 x = 1일 때
즉, 삼각형 ABC가 직각삼각형일 때 최댓값 (a*l)/3 을 가지는 것을 알 수 있는데,
돌려보면 결국 1번과 동일한 상황이라 그렇습니다.
정성스럽게 답변해주셔서 정말감사합니다!!
시간날때마다 고민하고 있었는데
덕분에 이해됐습니다. 감사합니다!!