2021연논 질문 하나만 해도 될까여
게시글 주소: https://orbi.kr/00069046060
3-2 해설에 일반성을 잃지 않고 사각형이 탑처럼 쌓여 올려져 있는 첫번째 그림 형태를 가정하고 풀이하는데, 아래 그림도 포함된 풀이인지 궁금합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
요근래 학생들 중간고사가 끝나 과외를 많이 알아봅니다!! 과외알바를 생각하시는...
-
수선의 발을 어느쪽으로 내리던 상관없는건가요 갑자기 헷갈리네요 사람마다 다 다르게...
-
아가 기상 2
일하러 가야행..
-
으아아 2
지루해..
-
6모를 모교에서 못보게 되었는데 걱정되어서 써봅니다
-
근데 넬이라는 밴드가 이제는 옛날 밴드가 되어버린건가 8
난 좋은데 다들 모르네
-
인도군, 파키스탄 내 9곳 정밀 타격...파키스탄 "반드시 보복할 것"(종합) 1
【하노이(베트남)=김준석 기자】인도군이 파할감 테러 2주 만에 파키스탄을 공습하면서...
-
화이팅
-
사실 요즘 실모를 안쳐봐서 성적상승은... 모르겠는데 작년에 행정입법, 키트,...
-
정치외교에 진짜 1
교수.학생들 좌파가 지배적인가요
-
어? 1
-
실모를 못 사놔서..ㅜ 작년이나 언제 퀄이 좀 좋았다 싶은 거 있으면 추천해주세요
-
아 지각이네 1
ㅠㅠ
-
ㅎㅇㅌ
-
억지로 널 붙잡고 흐느껴온 날
-
퇴근했다 4
밥먹고 병원갔다가 코노갔다가 스카가야지 히히
-
저희 학교 반마다 전부 2st 3st 이렇게 되어있는데 제 생각엔 틀린거 같은데...
-
내일 알려드림
-
ㅈㄱㄴ
-
=병신됨
-
너무 춥다 7
푸앙님이 불 뿜어주셔야 하는데…
-
5모 D-1 11
다들 화이팅하시고 불안에 사로잡히지 마시길...! 우린 뭐든 해낼 수 있으니까요...!
-
출근하기 싫어요 3
-
은은해서 빠져들어
-
생활비로만 60 숙소는 저렴한데 이용
-
정말로..
-
마음이 약해졋다 9
원래 맘에 안 들고 병신같은 사람 잇으면 먼 짓을 하던 아예 상종도 안햇는데지금은...
-
가기싫다 1
소레데모 이카나캬
-
과탐에서 ㅈ됨을 느낌 14
이게 수학 국어보다 훨씬 1받기 어려운 같은데 타임어택 시발임 내가 공부를 너무 안했나
-
이제 파운데이션이랑 킥오프 끝나고 아이디어 들어갈려고 하는데 기출문제도 좀...
-
한평통 ㅠㅠ 1
8시30분까지 학교는 에바에요..
-
얼버기 18
-
그냥 스터디카페에서 인강 보면서 삼수하는데 바로 밑에 층에 독재 학원 있더라 6모...
-
고민되넹
-
한번의 0
눈빛으로사랑하기엔 우린 너무 여려
-
포기가 빠른 사람,하라면 하겟는데 괜히 수학 놓치는거보단 화학 놓아주는게 나한테 약일거 같다
-
ㅇㅂㄱ 7
-
내가 1등
-
커피 루틴 4
아침 일어나자마자 물과 함께 한잔 아침먹고 한잔 점심먹고 한잔 저녁먹고 한잔
-
ㅇㅂㄱ 10
일어났는데 기분이 영 좋지않아
-
사는곳이 학교랑 같은 구 이면??
-
??
-
네시간밖에 못잤는데 뭔 신나는 하르여
-
갑자기 춥다 2
기분탓이겠지
-
나는 근데 솔직히 인간관계에서 상처를 많이 안받는 사람인 줄 알았음 2
근데 몇번 당해보니까 상처를 많이 받긴 하더라 사람이면 다 그런 듯 물론 그렇다고...
-
오늘까지 일하면 금요일 까지 쉰다 그리고 금요일에 알바비 들어옴!
-
자라 2
네
-
주인 잃은 레어 1개의 경매가 곧 시작됩니다. 일루미나티"음모론의 중심" XDK...
-
3모 땐 진짜 엄청 떨렸는데 5모는 하나도 안 떨리네
-
삼김 먹어야지 2
폐기먹기
저도예전에 질문해봤는데 돌리면 똑같아요.
직각삼각형이나오는게 의문이였는데 임의의삼각형으로 논하는거여서 사실상 위의 경우만 논해도 충분해요.
음.. 어렵네용
이렇게생각하면되요. 하나를 고정시키잖아요.
그러면 아래삼각형은 일단무시하세요.
그러면 특수한상황 일반적인상황으로 나누어져요
그러니 두개다논할이유가없죠
3-1 풀어보시면, 직사각형 PQRS의 변이 변AB, 변BC, 변AC 위에 있을 수 있기 때문에 세가지 삼각형이 나오는데, 세가지 경우 모두 공유하는 변의 길이가 1/2k (단, k=변AB or k=변BC or k=변AC) 일 때 동일한 최댓값을 가짐을 알게 되실 겁니다.
따라서 직사각형 P'Q'R'S' 를 첫번째 그림처럼 잡든 두번째 그림처럼 잡든 결과는 동일하므로, 편한 첫번째 경우로 푸는 것입니다.
그리고 사실 이런 연결형 문제는 대놓고 3-1 결과를 이용하라는 거여서...
자세한 설명 감사합니다. 좀 더 생각해봐야겠습니다 :)
3-1 풀이까지 적다가 해결하셨을 거라 생각해 지웠습니다.
그림과 같이 S=(a*l)/2 일 때 최댓값을 가지는데,
ㄱ, ㄴ, ㄷ 세가지 경우 모두 같은 삼각형이기 때문에 당연히 넓이 역시 동일하므로
a*l = b*m = c*n 이 성립합니다.
따라서 I 의 탑처럼 쌓인 경우와 II 의 경우 둘 다 같은 넓이이기 때문에 굳이 II 의 경우를 고려하지 않아도 되는 것입니다.
친절한 해설 정말 감사합니다 이해됐습니다 !! :)
설명을 너무 못했는데 이해하셨다니 다행이네요...
다시 보니 S=(a*l)/2이 아니라 (a*l)/4인데 잘못 적었네요 ㅋㅋ
ㄱ 의 경우 S = (a*l)/4
ㄴ 의 경우 S = (b*m)/4
ㄷ 의 경우 S = (c*m)/4
일 때 최대인데
a*l = b*m = c*n 이므로 세 PQRS 전부 같은 넓이라는 것을 말씀드리고 싶었는데 너무 대충 넘어간 것 같습니다..
그림처럼 P’Q’R’S’ 를 설정하는 과정이 다르고 넓이를 구하는 과정이랑 개념 자체가 달라고 결과적으로 넓이가 같다면 일반성을 잃지 않는다는 말씀이신가요??
아 죄송합니다. 어떤 부분이 궁금하신 건지도 모르고 다른 부분을 설명하고 있었네요...
계산해보면 그림의 2번의 경우 x = 1일 때
즉, 삼각형 ABC가 직각삼각형일 때 최댓값 (a*l)/3 을 가지는 것을 알 수 있는데,
돌려보면 결국 1번과 동일한 상황이라 그렇습니다.
정성스럽게 답변해주셔서 정말감사합니다!!
시간날때마다 고민하고 있었는데
덕분에 이해됐습니다. 감사합니다!!