0.000....0001 이 왜 불가능한가요?
게시글 주소: https://orbi.kr/00069264594
다른사이트에선 0이 무한히 있는데 끝이라는 1이 있다는게 모순이라서 안된다고 하던데요
제생각에는
무한+1=무한 이라서
그러니까 무한한 0이 있더라도 거기에 1이라는 하나를 더해도 무한그대로지 않냐는거임..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
자러갈지도 0
자러갈지도
-
오래된생각이야
-
시발 병신팀 2
개시발아오 ㅈ같은 새끼들 진짜 니들은 다 나가뒤져라 이 병신 ㅈ장애인구단아
-
팀 첫 메이저 대회 우승을 이끌어버리네 ㅋㅋㅋ
-
ㅇㄱㅈㅉㅇㅇ? 6
아이고…..
-
에제 핸더슨 지럈다잉 캬~~이거지
-
교도소였음
-
국정원 심찬우 커리로 쭉타서 5>3후 정도로 오른것 같긴한데 여기서 뭔가 정체되는...
-
난 어제 친구따라 갔다가 너무 싼마이 감성이라 충격받음 이상한 천박한 구호 외치더니...
-
인 연속함수 f(x) 가 존재하는가? 이 함수의 성질은 어떠한가?
-
뭐지
-
군대 가기 전 알바도 열심히 하고 주변에 공부 잘하는 친구들 얘기도 들으면서...
-
굳이 독재학원 다닐 필요 잇을가여? 근처 독서실 다닐까 생각중인데
-
잘자 아가들아 6
형 자러 갈게
-
답 470
-
ㅇㅋ ㅇㅋ, 그럼 오르비식으로 가볼게. 아 진짜 이거 말하면 좀 그렇긴 한데,...
-
저 조금 궁금해짐 오르비에 쓴 글들 gpt에 한번 돌려보면 뭐가 나올지도 -
-
자연수 하나를 저장하고 있는 기계가 있다고 하자. 이 기계에 저장되어 있는 숫자가...
-
이제 진짜 잔다 6
8시에 강기원 자받튀하러 가야됨
-
애니메이션 뭐에요..? ㄹㅈㄷ네
-
국수영 원점수 기준 전교 3등 국수영탐 원점수 기준 전교 2등 (추측)...
-
원래 수분감, 카나토미 이정도 하고 엔제 풀려고 했는데 교육청기출까지 하고...
-
메인글 뭐노 2
이제 봤네
-
레전드겠네 은케티아 유관 아스날 무관 ㅋㅋㅋㅋㅋㅋ
-
제 옆에 누워서 같이 자요 졸려..
-
시험장에선 좀 헷갈렸는데 지금 보니까 한눈에 보이네
-
아침 안 먹으면 훨씬 버티기 수월함 뭐 먹는 순간 긴장 다 풀리면서 급 졸림...
-
성대논술갔을때기억남 22
그때존나서러워서길거리걸으면서울고있었는데 그때길안내같은거하는성대생이왜우냐고하면서...
-
남자 유튜브에선 주접떨어도 별 말 안 하는데 왜 여자가 저런 글이나 영상 올렸을때...
-
9시 수업인데 9
지금까지 안자는 나는 머하는 머저리
-
쪽지기다려봅니다
-
독재 다니니 0
만날 시간이 없다 끄엥ㅠㅠ
-
출연 각인데 이젠진ㅉ인거 너무 티날듯
-
사실 이번에 개쉬워서 킬러도 아니였어서 2분컷내시면 goat 18 19번을 종치기...
-
어제와 3
오늘의 온도가 너무 달라서 비행운이 만들어졌네~
-
1, 2, 3교시 국수영 영역 시간: 250분 선택과목: 미적분과 영어 독해의 매체
-
본인 중딩 때 옆학교에서 소년원 가는 게 일상이었음 5
근데 팩트는 저런 넘들이 나보다 나은 인생이라는 거임 ㅅㅃ
-
격기 3반 고트...
-
장재원 서바 0
지금 장재원 대기40번인대 재원이 시즌1 안듣고 서바 들어도 ㄱㅊ아요? 미적3초임..
-
안녕하세요. 제 공뷰계획에서 수정할 부분 한 마디씩 말씀 해주시면 감사하겠습니다!...
-
왜 2
기여우신 분들이 다 탈릅하지 ㅠㅠ
-
유일한 자부심 5
고3도 고정1
-
슬전생 이거 짖짜 재밌긴하네 로맨스가 맘에 안들어서 다 찢어버리고 싶긴했지만 재밋어
-
올해 적백맞고 다들 성불하자
-
그냥 내 국수 백분위가 1등임 ㅋㅋ
-
본인 개좆반고특징 21
1. 교내 흡연의 생활화 2. 오토바이 등교의 생활화 3. 하교 후 음주 문화의...
-
양심고백 5
모 고대생 오르비언 특정한적 있음 보닌도 이미 특정당함
-
저기 혹시 0
이태린: 남자친구 있으세여?? 여자: 죄송해요 ㅜㅜㅜ (도망감) 감동실화다
-
학교 레전드 미친점 13
국수탐 백분위 99.90이었는데 백분위 전교 7등임 말이안돼
-
01058774485 13
0에서 1까지의 무한대의 수가 있는것과
단순 무한대에 상수1을 더한것과의
차이 아닐까요
무슨차이죠?
상수는 하나로 존재하는것이고 0에서 1까지의 무한대의수는 셀수없으니까요?
무한대의 수에 단순 1이라는 상수를 더한다는 행위 자체가 뭔가 이질적 인거 같아서.. 0에서 1까지다가가기에 무한대의 수를 더해도 1에 도달을 못하니 단순 무한대에 상수1을 더하는 행위가 의미가 없을거 같아서.. 개인적인 의견이라 무시하셔도 됩니다 ㅠㅠ
무한이라는 건 애초에 '끝'이라는 개념 자체를 못 쓰지 않나요
무한+1=무한 은 적용되지않나요?
무한한 수의 사과에 오이하나 넣는게 불가능한가요
ㅋㅋ
0.0000…이라는게 0으로 다가가는 우극한 같은걸 생각하시는 듯 싶은데 극한의 개념은 그런게 아닙니다
무한 + 1 = 무한 이라고 말씀하시는게 무슨 뜻인지는 알겠습니다. 그런데 그렇게 0을 “아주 많이“ 늘어뜨린 후에 끝에다가 1을 두는 순간, 그것은 0에 아주 가까운 소수이지 0의 우극한스러운 개념이 아닙니다. 그렇게 1을 두어 끝을 표시한 순간에 0.000….1은 0.000…00001보다는 큰 수가 되어버립니다.
무한의 개념을 혼동하시는 것 같은데, 무한개의 0 뒤에 1을 붙인다는 식의 아이디어는 애초에 불가능합니다. 어느 지점에 1을 붙이는 순간, 0은 유한개가 되어버립니다. 시작이 있고 끝이 있는데 개수가 무한하다는 것은 모순이겠죠.
그럼 중간에 0이 무한개있고 끝에 1이 있는건 불가능한가요?
말씀드렸듯이 ‘무한‘에 ‘끝‘이 있다고 생각하는 것 자체가 오류입니다. 0을 아무리 많이 늘여봤자 끝이 있다면 개수가 유한개인 것이죠. 시간이 아주 많이 걸릴지라도 하나하나 세다보면 언젠가 끝에 도달할 테니까요.
그럼 어떤 실이 있는데 그 실의 양끝단은 존재하면서 실의 길이가 무한히 늘어나면 안되나요?
좋은 의문입니다.
우리는 관념적으로 실에는 양끝단이 존재해야 한다는 것을 압니다. 그러나 그것은 실세계에 존재하는 실에 대한 경험적인 지식이죠. 만약 실의 길이가 무한대로 늘어난다면, 우리는 그것의 양 끝이 어느 지점에 있는지 특정할 수 없게됩니다. 여기가 끝일 것이라고 정하는 순간, 즉 시작점과 끝점을 정의하는 순간 그 사이의 거리가 실의 길이가 되고, 실의 길이가 무한이라는 전제에 모순이 됩니다.
그래서 보통 무한을 이해할 때, 어떤 값이 아니라 계속해서 뻗어나가는 상태로 이해하는 경우가 있습니다. 값이 아니라 상태로 받아들이신다면 무한에 끝을 정하는게 왜 오류인지 납득이 되실겁니다.
그럼 실의 양끝단을 왼손과 오른손에 나눠서 쥔다음에 실의 중간부분이 무한히 증식하는건 안되나요?
아무래도 상상하시기를
(-L/2,L/2)처럼 양끝단을 양과 음의 무한대로 보내는걸 상상하시는 것 같은데요
이 경우에도 우리가 양끝단의 위치를 모른다고 봐야합니다.
오른손과 왼손에 쥔다면 우리는 양끝점을 고정해놓은 상태이므로 아무리 늘여봤자 유한길이입니다. 처음과 끝이 있으면 길이를 잴 수 있다는걸 받아들이시지 못한 것 같습니다
실의 중간부분이 계속 늘어나는 상태일수는 없나요? 양끝단은 손에 쥐고요
제가 좀 혼동을 드렸네요
무한길이를 논의할 때 양 끝점의 존재는 그리 중요하지 않습니다. 예를 들어 원점을 출발해 원점으로 돌아오는 원을 그리는 자취를 생각한다면, 양끝점은 분명이 원점이지만 반지름을 무한히 늘리는 상황을 상상할 수 있겠죠. 양끝단을 손에 잡고 무한히 늘린다는 상상은 충분히 가능합니다.
다만 그것이 0.000…1과는 좀 다른 결일 뿐입니다. 무한소수는 다시 시작점으로 돌아오는 것이 아니니까요. 실의 예시는 시작과 끝을 알고 모르고와 관계 없이 길이를 무한히 늘릴 수 있는 경우이고, 소수의 예시는 시작과 끝이 정해지면 0과 1 사이에 0이 아주 많은 유한소수가 되는 경우입니다.
소수도 시작을 왼속에 쥐고 끝을 오른손에 쥐고 그사이에 무한히 늘어나는걸로 하면 안되나요
그런 걸 상상할 수는 있겠지만.. 왼손에서 오른손으로 실을 따라 가는 관찰자를 상상한다면
이 관찰자가 오른손에 영원히 도달할 수 없기때문에 여전히 끝을 모르는 상태라고 말할 수 있을 것 같습니다
양끝단을 쥔 양손간의 거리가 20cm고 실은 그 사람의 앞쪽으로 무한히 길어지면 안되나요 계속물어서 죄송합니다
위에다 답글 달았습니다 제가 오해한 부분이 있었네요
정리하자면, 0과 1 사이에 0의 개수를 무한히 늘린다는 생각 자체는 불가능한 것이 아닙니다.
제가 지적한 것은 ‘무한개의 0 다음에 1이 온다‘류의 생각입니다. 이것과 0위 개수를 무한히 늘린다는 아주 결이 다른 말입니다. 앞의 것은 성립할 수 없는 말이거든요.
예를 들어 10^{-n}을 생각해봅시다. 이것이 우리가 이제까지 논의한 0.000….001이죠. n을 무한으로 보내면 0이 무한개로 늘어납니다. 그러나 1은 영원히 나오지 않습니다.
n=1이면 0.1, n=2면 0.01 여기서 n=0의 갯수 n=inf면 0의 개수 무한 그리고 1은 사라지나요? 앞에 1일떄랑 2일때는 1이 있었잖아요
소수의 맨 끝에 1을 붙이는 행위, 그러니까 표기에 대한 오해가 있으신겁니다. 그렇게 무한히 늘어나는 0을 생각하면, 0이 계속해서 붙기때문에 1이 나올 타이밍이 영원히 나오지 않을 것입니다. 그래서 우리는 이런 상황을 표기할 때는 1을 뒤에 붙이지 않는 것입니다. 소수에 끝이 있다는 것 자체가 유한소수임을 암시하는 표기입니다.
저는 단순히 n=1때도 1이 있었고 n=2일떄도 1이 있었고... 그래서 무한일때도 1이 있지않나.. 라고 그냥 일반화시켜서 생각했습니다
당연히 있는게 맞습니다. 그저 질문에 적은것처럼 표기하지 않을 뿐입니다. 만약 10^-n과 3 x 10^-n처럼 비슷한 스케일에서 비교할 경우 그 1이 영향을 발휘합니다
이렇게 길게 대화해주셔서 정말 감사합니다
제가 오해해서 답변이 좀 돌아갔는데 끈기 있게 질문해주셔서 감사합니다. 무한에 대해 오해하고 계신 줄 알았습니다.
저런 실수가 있다고 할 때, 이걸 x라 두면 x/10도 x일 거에요. 0이 무한개든, 무한+1개든 같으니까요.
그런데 이때 10x=x에서 x=0이죠. x/10=x를 성립시키는 실수는 0밖에 없으니까요.
물론 이것도 엄밀한 설명은 아니에요
오...
그런데 x/10이랑 x가 다르다고 하면 어떻게되나요?
x/10이랑 x를 구별할 수 있다면, x=0.0000...0001에서 1 앞의 0의 개수가 유한한 거겠죠
따라서 x는 그냥 실수고요