a<c<x, x->a+ 이면, c->a+ 라는 명제
게시글 주소: https://orbi.kr/00068883163
다음 논의가 틀린 이유는 무엇일까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
알바하고 여행가고 집 어느정도 잘살고 하는애들 보면 부러움 분명 대학은 내가 더...
-
귀찮다.
-
하 먼가 이번 입시 실패한 사람 1년간의 글목록 보면 좀 슬프네 0
1년간의 입시공부->수능->진학사원서질->추합대기 모든 과정이 한눈에 보이는게 그...
-
응급실 고칠게 the name 그대를 사랑하는 10가지 이유 천상연 바보에게 바보가...
-
곧 새르비도 못하겠군 11
나를 잊지말아줘 ㅜㅜ
-
어느날 말없이 떠나간대도 그뒷모 습까지도 사랑할래에
-
재밋겟다
-
다 성격보고 도망침
-
도화지가 없어도 0
그림을 그린다
-
무섭다
-
난 잠시 그녈지켜줄뿐야 아무것도 바라는 것 없기에 그걸로도 감사해 워어
-
오르비 잘 자! 7
좋은 꿈 꾸기
-
3수 후 재수보단 좋은 성적을 얻었고 하지도 않았던 표본분석 매일 진학사 확인을...
-
근데 안자는 것 같음
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
역시 달리기선수는 다르다 이건가
-
https://orbi.kr/00016460498...
-
헤드셋 꺼놧다가 깜빡햇다 ㅋㅋ.
-
보컬 학원 다니기 본인 2년 좀 넘게 배우고 바리톤 이 새낀 고음 뚫기 존나...
-
266일금방이지 3
응
-
뭐가 더 나앗을지 모르겟다, 달리기로 멀 엮으려하면 다 별로다
-
쌩라이브는 대부분이 한음 내려서 부르던데 그럼 나도 노래방에서 2키 내려도 되는거자나
-
아직도 안 갓다 레전드 게으름
-
mnm 맛잇다 0
나의 아침
-
예전에 보낸거지우려는데..
-
셀레스티얼 > 사평우 > 어피니티 > 심심한 > 달리기선수
-
아까분명 싸이버거에소떡소떡에초밥먹고싶다썻는데 동태탕에 흰쌀밥먹고싶더니 이젠 레몬아이스티 마시고 싶음
-
정말 짜릿하다카피 닌자 셀레스티얼
-
해봐야겠다 버프를 얼마나 한거야
-
오르비하기도 바쁘다
-
해뜨고 봐요-!
-
닉변 12일 0
기다리기 힘들군
-
ㄷㄷ
-
모두 거짓이겟죠
-
최근에 깨달은건데 마지막에 대입해야할때 (특히 분수꼴) 조금이라도 막히면 걍...
-
진짜임
-
며칠 전에 꿈에서 16
은하수를 봤는데 도시 야경 위로 높은 빌딩에 조명에 엄청 화려한데 그 위로 은하수가...
-
인강에회의감이듦 4
어카죠
-
ㅇㅈ 4
사진 없는데 왜 클릭
-
전에 중학교때는 비록 친구도 거의 없고 찐따였지만 그냥 맛있는거 먹고 가끔씩...
-
나 1
하하
-
몸이 많이 안 좋구나 16
이제 개학까진 일말곤 나가지 말아야겠다 개학하긴 하려나..
-
4시에 뉴런듣기 0
챔스까지 한 시간
-
8살 때 처음 다닌 피아노학원 원장님이 영재라며 되게 좋아하셨던게 문득 기억나네...
-
ㅈㄱㄴ
-
와 역시 넘사www.youtube.com/shorts/3zwuOxVQUwE
-
아빠카드 써야지 난 슬픈 삼수생이니까 당당하게 사먹을 수 있다
-
뭐야
-
전 봇치 봇치 외모 못 참아
-
저 키워주실 여르비 구함 가정주부하면서 주식으로 돈 벌게요
클로드 ai에 물어봤는데 x->a+ 이면 c->a+ 인 것은 맞고,
lim(x->a+)f'(c) 일 때 c는 x에 종속된 변수이지만 lim(c->a+)f'(c)에서 c는 독립변수라서
수렴할 때 c의 움직임이 종속돼있을 땐 경로가 제한적이지만 독립적일 땐 아니고,
f'이 불연속인 경우에 특히 이런 불일치가 부각돼 보일 수 있다네요.
위에서 3번째 줄에 문제가 있었네요.
가장 오른쪽 극한(c->a+)이 이 존재한다면 오른쪽에서 두번째 극한(x->a+)이 존재하는 것은 맞지만, 역은 성립하지 않네요. 이는 윗분이 말씀하신 c가 독립 변수인지 종속 변수인지와 유사한 논의이군요.(가장 오른쪽 극한은 c가 독립변수, 오른쪽에서 두번째 극한은 c가 x에 종속된 변수)
극한의 정의(엄밀한 엡실론 델타)를 생각해보면 델타 구간 내의 모든 x의 함수값이 엡실론 구간 내에 있어야 합니다. 오른쪽에서 두번째 극한(x->a+)이 존재하면, 델타 구간 내의 적당한(어떤) c가 존재하여 그 c의 함수값이 엡실론 구간에 있다는 것이고, 이는 극한의 정의에 부합하지 않습니다. (모든이 아니라 어떤 이니까요.)
오른쪽 극한이 존재한다면, 델타 구간 내의 모든 c의 함수값이 엡실론 구간에 있다는 것이므로, 오른쪽에서 두번째 극한도 같은 값으로 존재한다는 것을 알 수 있습니다.(델타 구간 내의 모든 c에 대해 성립한다면, 어떤(일부분의) c에 대해서는 자명히 성립하기 때문입니다.)
정리하자면, 모든과 어떤의 차이라고 할 수 있겠네요.