수2 미분 문제 풀어볼사람
게시글 주소: https://orbi.kr/00068727138
![](https://s3.orbi.kr/data/file/united/73f53a94d899b95ac0b3cb1774d7b85f.jpg)
답은 모름 일단 난 30나왓는데 풀이는 f(x) 의 도함수가 최댓값을 가지니까 상수함수 아니면 2차함수 일거고 난 도함수가 상수라고 두고 풀었는데 그럼 f(x) 는 7x+2 가 될거고 ( f(0) = 2 ) 그래서 f(4) =30 //// 근데 이게 2차로 두고 풀면 미지수가 너무 많아져서 안풀리는데 내 풀이도 뭔가 자연스럽지가 않아서 답이 아닌거 같고.. 접근 방식이 아예 틀렸나
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
f가 다항함수라는 말이 없는데 다항함수라고 생각하면 안됨
미분가능한 함수라고 했지 다항이 아닌거니까 저 조건을 만족만 하면 다항 아니어도됨
저거 평가원 모의고사인가 수능 8번에 나왔던건데
혹시 이건가요? 2023 6평
답은 30맞아요
평가원 문제 변형이군요
서술형에 상수함수 또는 이차함수기 때문에 이런식으로 쓰면 0점일거 같아요
도함수의 정적분이 원시함수 함수값의 차임을 이용하는게 정석인듯
다항함수라고 단정하는건 좀 아닌듯
그게 아니라 7 그어놓고 아래 색칠한 부분의 넓이 최대를 구해야지
g(x)= f(x) - (7x-2) 라고 정의하면
g'(x) 0 이하이고
g(0)=0이라서
g(4) <= 0임
그래서 f(4) <= 30 임
실제로 등호성립상황도 찾을 수 있음