3rd bounded cohomology of Kleinian surface group
게시글 주소: https://orbi.kr/00068516715
Hyperbolic 3-manifold에 대해서 알고 있는 사람도 소수의 사람들 빼고는 bounded cohomology에 대해서는 잘 모른다. (당연하다) 놀랍게도(?) hyperbolizable 3-manifold의 3rd bounded cohomology는 geometrically infinite 인 경우에 대해서는 interplay가 있다. Geometrically finite한 경우에는 3rd bounded cohomology는 아무것도 capture하지 못하는데, 그 기본적인 이유는 convex core가 bounded 되어있기 때문이다.
Theorem A. (Cohomological nearness implies geometric sameness). For a given $i_0>0$, let $(M_0,f_0)$ be any doubly-degenerate element of $AH_+(\Sigma_g)$ with $\mathrm{inj}(M_0)\geq i_0$. Then there exists a constant $\epsilon(g,i_0)>0$ depending only on $g$ and $i_0$ so that any element $(M_1,f_1)$ of $AH_+(\Sigma_g)$ satisfying $\parallel [f_0^*(\omega_{M_0})] - [f^*_1(\omega_{M_1})]\parallel<\epsilon$ in $H^3_b(\Sigma;\Bbb R)$ is equal to $(M_0,f_0)$ in $AH_+(\Sigma_g)$.
Corollary B (Geometric nearness does not imply cohomological nearness). Suppose that $\{M_n,f_n\}_{n=1}^\infty$ is a sequence in $H_+(\Sigma_g)$ such that each $(M_n,f_n)$ is not doubly-degenerate. then, $\{[f_n^*(\omega_{M_n})]_B\}_{n=1}^\infty$ contains no subsequences converging in $HB^3(\Sigma_g;\Bbb R)$ to the (induced) fundamental class of doubly-degenerate elements of $AH_+(\Sigma_g)$.
Theorem C. Suppose $\Gamma$ is a topologically tame Kleinian group such that the volume of $M_\Gamma$ is infinite. Then $[\omega_\Gamma] = 0$ in $H^3_b(M_\Gamma;\Bbb R)$ if and only if $\Gamma$ is either elementary or geometrically finite. If $[\omega_\Gamma]\neq 0$ in $H^3_b(M_\Gamma;\Bbb R)$, then $\parallel \omega_\Gamma\parallel = v_3$, so in particular, $[\omega_\Gamma]_B\neq 0$ in $HB^3(M_\Gamma;\Bbb R)$.
Theorem D. Let $M,M'$ be hyperbolic 3-manifolds with markings $\iota:\Sigma\to M$, $\iota':\Sigma\to M'$ respectively. Suppose that either the $(+)$ or $(-)$-end $\mathcal{E}$ of $M$ with respect to $\iota(\Sigma)$ is totally degenerate. If
$$\parallel\iota^*([\omega_M]) - \iota'^*([\omega_{M'}])\parallel<v_3$$
holds in $H^3_b(\Sigma;\Bbb R)$, then there exists a marking and orientation-preserving homeomorphism $\varphi_0:M\to M'$ and a neighborhood $E$ of $\mathcal{E}$ such that $\varphi_0|_E:E\to E' = \varphi_0(E)$ is bilipschitz. In particular, $\varphi_0$ defines the bijection between the components of $E_{cusp}$ and those of $E'_{cusp}$.
Corollary E. Under the assumptions in theorem A, suppose moreover that all genuine ends of $M$ are simply degenerate. Then $\varphi$ is properly homotopic to an isometry. In particular, $\iota^*([\omega_M]) = \iota'^*([\omega_{M'}])$ in $H^3_b(\Sigma,\Bbb R)$.
Theorem F. Let $M$ be an oriented hyperbolic 3-manifold with a marking of $\Sigma$. Suppose that there exists an orientation-preserving homeomorphism $\varphi$ from $M$ to another hyperbolic $M'$ inducing a bijection between the components of $M_{cusp}$ and those of $M'_{cusp}$. If
$$\parallel [\omega_M] - \varphi^*([\omega_{M'}])\parallel <v_3$$
holds in $H^3_b(\Sigma;\Bbb R)$, then $\varphi$ is properly homotopic to a bilipschitz map.
Theorem G. Let $G$ be a group, and let $\Gamma_1,\ldots,\Gamma_n$ be topologically tame Kleinian groups admitting isomorphisms $\varphi_i:G\to\Gamma_i$. Suppose that, for each $M_{\Gamma_i}$, only one end $E_i$ of $M_{\Gamma_i}$ is geometrically infinite. Let $\Lambda_i$ be a subgroup (uniquely determined up to conjugate) of $\Gamma_i$ corresponding to $E_i$. If, for every integers $i,j$ with $1\leq i\leq j\leq n$, there exists $\lambda_{ij}\in\Lambda_j$ such that $\varphi_i^{-1}(\Lambda_i)\cap C_\infty(\varphi_j^{-1}(\lambda_{ij})) = \emptyset$, then $[\varphi_1^*(\omega_{\Gamma_1})]_B,\ldots,[\varphi^*_n(\omega_{\Gamma_n})]_B$ are linearly independent in $HB^3(G;\Bbb R)$. Here, $C_\infty(g) = \bigcup_{n=1}^\infty C(g^n)$ where $C(g) = \{hgh^{-1}:h\in G\}$.
Theorem 1.1. Suppose $\Gamma$ is a finitely generated group that is isomorphic to a torsion-free Kleinian group without parabolics, and let $\{\rho_\alpha:\Gamma\to\mathrm{PSL}_2\Bbb C:\alpha\in\Lambda\}$ be a collection of discrete and faithful representation without parabolic or elliptic elements such that at least one of the geometrically finite end invariants of $M_{\rho_\alpha}$ is different from the geometrically infinite end invariants of $M_{\rho_\beta}$ for all $\alpha\neq \beta \in \Lambda$. Then $\{[\hat{\omega}_{\rho_\alpha}:\alpha\in\Lambda]\}$ is a linearly independent set in $H^3_b(\Gamma;\Bbb R)$.
Theorem 1.2. Suppose $\Gamma$ is a finitely generated group that is isomorphic to a torsion-free Kleinian group without parabolics. Then there is an $\epsilon = \epsilon(\Gamma)>0$ such that if $\{\rho_i:\Gamma\to\mathrm{PSL}_2\Bbb C:i = 1,\ldots, n\}$ is a collection of discrete and faithful representations without parabolics or elliptic elements such that at least one of the geometrically infinite end invariants of $M_{\rho_i}$ is different from the geometrically infinite end invariants of $M_{\rho_j}$ for all $i\neq j$ then
$$\parallel\sum_{i=1}^n a_i[\hat{\omega}_{\rho_i}]\parallel_\infty >\epsilon\max |a_i|.$$
Theorem 1.3. Let $S$ be an orientable surface with negative Euler characteristic. Then there is a constant $\epsilon = \epsilon(S)$ such that the following holds. Let $\rho:\pi_1(S)\to\mathrm{PSL}_2\Bbb C$ be discrete and faithful, without parabolic elements, and such that $M_\rho$ has at least one geometrically infinite end invariant. If $\rho':\pi_1(S)\to\mathrm{PSL}_2\Bbb C$ is any other representation satisfying
$$\parallel[\hat{\omega}_\rho] - [\hat{\omega}_{\rho'}]\parallel_\infty<\epsilon,$$
then $\rho'$ is faithful.
Corollary 1.4. Let $S$ be a closed orientable surface of genus at least 2. There is a constant $\epsilon = \epsilon(S)$ such that the following holds. Suppose that $\rho:\pi_1(S)\to\mathrm{PSL}_2\Bbb C$ is discrete, faithful, without parabolics, and such that $M_\rho$ has two geometrically infinite ends. Then for any other discrete representation $\rho':\pi_1(S)\to\mathrm{PSL}_2\Bbb C$, if
$$\parallel[\hat{\omega}_\rho] - [\hat{\omega}_{\rho'}]\parallel_\infty<\epsilon,$$
then $\rho$ and $\rho'$ are conjugate.
Corollary 1.5. There is an injective map
$$\psi:\mathcal{EL}(S)\to\overline{H}^3_b(\pi_1(S);\Bbb R)$$
whose image is a linearly independent, discrete set.
Theorem 2.1. If $\rho_1$ and $\rho_2$ are discrete, faithful, without parabolics, and their quotient manifolds $M_{\rho_i}$ are singly degenerate and share one geometrically infinite end invariant, then $\rho_1^*\mathrm{Vol} = \rho_2^*\mathrm{Vol}\in H^3_b(\pi_1(S);\Bbb R)$.
Theorem 2.2. Let $\lambda,\lambda'\in\mathcal{EL}_b(S)$ and $X,Y\in\mathcal{T}(S)$ be arbitrary. We have an equality in bounded cohomology
$$[\hat{\omega}(\lambda',\lambda)] = [\hat{\omega}(\lambda',X)]+[\hat{\omega}(Y,\lambda)]\in H^3_b(S;\Bbb R).$$
Here, $\mathcal{EL}_b(S)\subset\mathcal{EL}(S)$ denotes the lamination that have bounded geometry.
Corollary 2.3. Suppose $\lambda_1,\lambda_2,\lambda_3\in\mathcal{EL}_b(S)$ are distinct. Then we have an equality in bounded cohomology
$$[\hat{\omega}(\lambda_1,\lambda_2)] + [\hat{\omega}(\lambda_2,\lambda_3)] = [\hat{\omega}(\lambda_1,\lambda_3)]\in H^3_b(S;\Bbb R).$$
Theorem 2.4. Fix a closed, orientable surface $S$ of negative Euler characteristic. There is an $\epsilon_S>0$ such that if $\{[\rho_\alpha]\}_{\alpha\in\Lambda}\subset\mathrm{Hom}(\pi_1(S),\mathrm{PSL}_2\Bbb C)/\mathrm{PSL}_2\Bbb C$ are discrete, faithful and without parabolics such that at least one of the geometrically infinite end invaraints of $\rho_\alpha$ is different from the geometrically infinite end invariants of $\rho_\beta$ for all $\beta\neq\alpha\in\Lambda$, then
(1) $\{\rho_\alpha^*\mathrm{Vol}\}_{\alpha\in\Lambda}\subset H^3_b(\pi_1(S);\Bbb R)$ is linearly independent set;
(2) $\parallel\sum_{i=1}^Na_i\rho_{\alpha_i}^*\mathrm{Vol}\parallel_\infty\geq\epsilon_{S}\max |a_i|$.
Corollary 2.5. The bounded fundamental class is a quasi-isometry invariant of discrete and faithful representations of $\pi_1(S)$ without parabolics. In this setting, $\parallel\rho_0^*\mathrm{Vol} - \rho_1^*\mathrm{Vol}\parallel_\infty<\epsilon_S$ if and only if $\rho_0$ is quasi-isometric to $\rho_1$.
Theorem 2.6. Suppose $\rho_0:\pi_1(S)\to\mathrm{PSL}_2\Bbb C$ is discrete, faithful, has no parabolic elements, and at least one geometrically infinite end invariant and let $\rho:\pi_1(S)\to\mathrm{PSL}_2\Bbb C$ be arbitrary. If $\parallel\rho_0^*\mathrm{Vol} - \rho^*\mathrm{Vol}\parallel_\infty<\epsilon_S/2$, then $\rho$ is faithful. If $\rho$ has dense image, then $\parallel\rho_0^*\mathrm{Vol} - \rho^*\mathrm{Vol}\parallel_\infty\geq v_3$ where $v_3$ is the volume of the regular ideal tetrahedron in $\Bbb H^3$.
Corollary 2.7. Suppose $\rho_0:\pi_1(S)\to\mathrm{PSL}_2\Bbb C$ is discrete and faithful with no parabolics and at least one geometrically infinite end invariant and $\rho_1:\pi_1(S)\to\mathrm{PSL}_2\Bbb C$ has no parabolics (but is otherwise arbitrary). If $\parallel\rho_0^*\mathrm{Vol} - \rho_1^*\mathrm{Vol}\parallel_\infty<\epsilon_S/2$, then $\rho_1$ is discrete and faithful, hence quasi-isometric to $\rho_0$.
Theorem 2.8. Suppose $M_0$ and $M_1$ are hyperbolic 3-manifolds without parabolic cusps with representations $\rho_i:\pi_1(M_i)\to\mathrm{PSL}_2\Bbb C$, $M_1$ is totally degenerate, and $h:M_1\to M_2$ is a homotopy equivalence. If $M_1$ is topologically tame and has incompressible boundary, then there is an $\epsilon$ depending only on the topology of $M_1$ such that $h$ is homotopic to an isometry if and only if $\parallel\rho_0^*\mathrm{Vol} - \rho_1^*\mathrm{Vol}\parallel_\infty<\epsilon$.
Definition. Fix a base point $X\in\mathcal{T}(S)$, and define $\iota:\mathcal{EL}(S)\to H^3_b(S;\Bbb R)$ by the rule $\iota(\lambda) = [\hat{\omega}(X,\lambda)]$. Theorem 1.1 guarantees that $\iota$ does not depend on the choice of $X$.
Theorem 2.9. The image of $\iota$ is linearly independent set. Moreover, for all $\lambda,\lambda'\in\mathcal{EL}(S)$, if $\parallel\iota(\lambda) - \iota(\lambda')\parallel_\infty<\epsilon_S$ then $\lambda = \lambda'$. Finally, $\iota$ is mapping class group equivariant, and $\iota(\mathcal{EL}(S))$ is a topological basis for the image of its closure in the reduced space $\overline{H}^3_b(S;\Bbb R)$.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
회원에 의해 삭제된 댓글입니다.좋아요 0
-
이른거임? 진짜 궁금함
-
무슨 글을 써야될지 10
감이 안옴
-
말 못 할 고민들이 많으면 그것으로 인해 마음이 황폐해질 수도 있기 때문에 믿을 수...
-
4수 문과 0
재수해서 대학에 왔고 이제 2학년인데 전공도 안 맞고 학벌 열등감도 좀 있는 것...
-
제발
-
생윤 윤사는 0
국어 인문제재랑 한국사랑 연계하면서 풀면 더 재밌는 것 같아요 국어 지문에서 생윤...
-
술빨다옴 0
요즘 고민이좀 많네
-
날씨 좋다 1
지금 산책 나왔는데 지금 날씨 완전 좋음
-
오……..아예 의식을 못하고잇엇음… 그러네….
-
추천 부탁 드려요 >.<
-
다들 기여움
-
프사 뭐로할까 고민중
-
그냥 따로 개념 자체를 겅부해야겠던데 나오고 또 나오고 또 나와서
-
솔직히 07 0
애기임 응애
-
김범준 쌤도 이렇게 만들면 1타 가능할 듯 ㄹㅇ
-
조선족들이 쓰는 방언이 바로 육진 방언입니다....
-
뚜비두밥
-
서울대 vs 5억 18
옛날에 코미디빅리그에서 했었던건데...
-
기하란 어떤 과목일까
-
수1이랑 미적만..스블듣고 미친기분은 듣고 이상할까..?????
-
네에 ㅋ
-
아직 탈릅안하셨어요 닉네임 바꾸심
-
독서 기출 쭉 풀다가 해설강의는 강사꺼 많이 봤는데 정석민이 내 성격이랑 잘 맞는거...
-
예를들어 100억건물받으면 진짜약50억을 세금으로 내야되는거면 낼현금없으면 팔아야되나요?
-
최고혈압 최저혈압 a구간에서 안들림 안흐름 맥박x B구간에서 흐름 혈액음들림 맥박o...
-
❤️❤️
-
공부에 집중해야겠음
-
즛토마요 6
아시는 분 노래가 너무 좋음
-
전 이상형 잇음 2
이쁜 사람임
-
진짜 좆같다 11
왜이리 남 인생에 관심이 많고 자기보다 못살면 무시하고 잘살면 질투하고 약간의 틈만...
-
50억 갖기vs연대의대 23
둘중 택하라고 하면 어디? 전 전자ㅋㅋ
-
머야 안시호님 5
왜 안계시지 가신거ㅓㄴ가
-
언매 94 미적 88,.. 영어 95 국사 33.. 물리 50 지구는 32분에 45...
-
재밋겟다
-
캬오오오오오오오오오오 크르르르르르르르르르르
-
링크트리같은 미니 랜딩페이지 만들고 있는데 투표좀 부탁드립니다 (투표기능 붙여서...
-
2025 3월 학평 1번은 지수법칙 그냥 계산만 해주면 답이 5네요 2번은...
-
올해 고2입니다 고1때는 꿈도 없었고 부모님이 이과 진학을 희망해서 선택과목을...
-
시설 어떤가요.. 화장실 깨끗한가요??
-
근데 걍 아무것도 열심히 안해가지고, 딱히 울 일이 없는 것이엿음
-
맛있나...? 술담배 거의 안 하는 대신 커피는 좋아하는듯
-
오르비 안녕 잘있어 10
이러면 사람들이 댓글에 가지마 ㅠㅠㅠ 이렇게 써줌?
-
말랑P 5수선언문 씹 ㅋㅋㅋㅋ
-
오케이 3
오르비 빙고 '휴릅하거나 탈릅한적 있음' 채웠고 ㅋㅋ
-
흠..
-
눈치보이네 10
일상글 뻘글 쓰고싶은데 잘못한게 있어서
-
힘들어서 돌아옴 10
나도 허리찌짐하면서 돈 벌고 싶다
-
더어 울어라~~ 2
젊은 인생아~~
-
오르비 안녕히계세요 12
짧은 시간이었지만 정말 많은 분들과 좋은 이야기 나누었습니다 입시 하다가 힘들면...