루트(a^2+x^2) 적분하는 법
게시글 주소: https://orbi.kr/00068409375
아래와 같이 치환적분 해줍니다
그러면,
저 적분을 해주면
뒤에 있는거 적분 먼저 해주면
부분 적분으로 이렇게 해줄 수 있음.
이제 이걸 대입하면
마지막 항을 이항하고 2로 나눠서
을 얻을수 있음 이제, 저걸 적분해주면
이제 이걸 다시 x로 고쳐주면 됨
예전에 전자기 책 풀다가 등장해 20분동안 적분 어케 하는지만 찾았음.... 시험 도중이었으면 이거 못풀었을듯..
사실은 고등학교 교육과정 내에서만 빡세고
대학교 과정을 허용한다면 쌍곡선 함수라는게 있어서 조금 더 나아요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
떡락하고 떡상하고 아주 개지랄을 하는구나..
-
왜 우리세대만 수능때문에 고통받노? 제발 하던대로 내라고 으악
-
저는 난이도 조절 실패가 아니라 이 가능성도 좀 생각해야 할 거 같응
-
을 가르키고 있었음에도 오르비에서 1과목 안 멸망을 외치고 심지어 그걸로 메인까지...
-
유웨이인거임? 찾아봐도 안나오는디 링크좀요 ㅠ
-
난이도 상관없이 자신이랑 잘 맞는 실모가 있으신가요 5
전 뭔가 강X가 잘맞는듯 85분컷 96까지 맞아봄(그때 아깝게 실수 하나해서 100...
-
혹시 예를들어 각 강사의 수학 n제가 매년 모든 문제가 다 바뀌는건가요? 아니면...
-
9더프 수학 망 0
72점 입갤 12 13 14 21 22 28 30 아니이거 왤케 어렵지
-
이거 얼마나 고트인거임? 19수능 보셨어요
-
위험하네요
-
물2 지엽 4
트랜지스터 내가 더프 8번 틀려서 그러는거 아님
-
악질저격scope거나 잘못 눌렀거나..
-
쌍지리임 구글맵과 나무위키, 세계여행 유튜브만 있으면 하루종일 덕질 가능
-
와 진짜 수능이 다가오는구나 반팔만 입고는 못다니겠네.
-
기적의 1빙고 ㅋㅋㅋ
-
왤케 하나같이 좆같이생겼지
-
수험생 취향 고려해서 오토코노코물도 가끔씩 출제해야한다 생각해요
-
기분 더럽지만 이왕 화학 선택한거 악깡버하자고 한거 오르비 때문에 꺾여버릴거 같음...
-
물리좃댐 2
배기범모 34점 31점 개좃박았음 근데 혼자서 풀어봐도 못풀겠는 문제가 두개씩 있음...
응애
응애 확통이 눈아파
그런거몰라서쌍곡선회전시켜서구하기
이게 수학적으로 훨씬 의미 있는 방법이긴 해요 ㅋㅋ
적분못해서척추회전한거라울었어
크아아악
실제러 쌍곡선 함수를 생각해보면
이게 더 나은 풀이일지도?
cosh^2 x=1+sinh^2 x 이용해서 치환하는거죠

거 외계어쓰지마십시다..대충 쌍곡선용으로 개발한 삼각함수세팅같긴한데
넵 맞아요. 그런 식이에요. 대신 얘네는 실수로도 다른 함수로 나타낼 수 있음
cosh x = (e^x+e^-x)/2
sinh x = (e^x-e^-x)/2
신기하네ㄷㄷ
하이퍼볼릭이엿나..
예전에 잠깐 팠는데 탄젠트가 안된다만 기억나네요
복소수에서는 사실상 두 함수가 같아요
cos(z)=cosh(iz)
sin(z)=-isinh(iz)
ㅊㅎㅈㅇㄱ
조이고 즐기는 적분
치환조이고
점화식으로 적분해버리기
오옹 나이스
이게뭔개소리???
노베이스 친구가 시발점에 있다고 루트(1-x^2)인가? 적분 물어봤는데 고교과정으로 아무리 해도 안 돼서 삼각치환으로 해줬는데
y=루트(1-x^2)으로 놓고 원의 일부를 적분(부채꼴+삼각형) 그렇게 푸는 거더라고요
맞아요 그건 생각보다 삼각치환만 알면 쉬워요
걔랑 비슷한 꼴인데 얘는 난이도가... ㅋㅋㅋ
얘는 삼각함수 대신 쌍곡선 함수를 쓰면 훨씬 편하긴 해요
삼각치환을 안 쓰고 설명해 주려고 했는데 도저히 안 돼서 일단 삼각치환으로 해주고 현우진은 어떻게 푸냐고 물어봤는데 위에 적은 방법대로 풀었다고 하더라고용
쌍곡선함수... 23년에 1학년 1학기 다닐 때 미분적분학에서 배운 것 같은데 1도 기억 안 나네요
cosh^2 x = 1 + sinh^2 x 이용해서 치환하면 편해요!
그 다음에
cosh x = (e^x+e^-x)/2
sinh x = (e^x-e^-x)/2
이거 이용해서 다시 바꿔주면 끝
으악
에피 ㄷㄷ 같이 화이팅해요!
이게무슨
간단해보이지만 미친듯이 빡센....
좀 더 쉬운 방법으로 하려면 사실상 교과를 한참 벗어나긴 하지만
x=a(e^t-e^-t)/2=asinh(t)로 치환하면 더 빨리 풀리긴 해요