수학 오개념 잡기 - 경우의 수와 확률
게시글 주소: https://orbi.kr/00068019202
제가 재수학원 때 수학 공부를 정말 많이 했었습니다. 정말 평생동안 미뤄놓은 수학 공부를 거읜 1,2년 안에 압축해서 벼락치기처럼 공부한다는 느낌이 강했는데요. 그 중에서 특히 제가 크게 깨달은 것은
내 머릿속에 오개념(수학과 물리 탐구)이 너무 많이 들어있구나! 였습니다.
여러분도 만약 계속 특정 영역이나 유형에서 틀리는 것을 반복한다면, 혹시 오개념이 잡히지 않았나 의심해보시기 바랍니다. 특히 제가 수학과 더불어 물리는 정말 못했는데요, 물리를 정말로 극단적으로 잘하는 친구를 우연히 만나서 교류를 하면서 큰 충격을 받은 바 있습니다. 그 친구 덕에 물리 오개념을 전부 다 바로잡고 나서야 성적이 오르더군요.
서론이 길었습니다. 내용 자체는 심플합니다. '경우의 수와 확률은 서로 다른 개념인데, 종종 둘을 같이 생각한다'는게 이번에 바로잡고 싶은 오해입니다.
양궁 선수가 과녁 앞에 서 있고, 과녁을 향해 화살을 쐈습니다. 아주 쉬운 질문입니다. 경우의 수는 몇 가지입니까? 2가지 입니다. 과녁에 맞거나, 과녁에 맞추거나. 확률은 각각 얼마일까요? 아직 잘 모릅니다 입니다.
여기서 경우의 수와 확률을 서로 혼동하는 오개념이 잡힌 학생들은, 엥 확률은 50%씩 아닌가요? 왜? 경우의 수가 2가지잖아요. 그러니까 100%를 둘로 나누면 각각 50%! 라고 하면 평가원이 살짝 꼬아 내는 경우의 수와 확률 문제를 전부 틀려버리는 것입니다.
양궁 선수가 정말 실력이 좋아서 90%확률로 과녁을 맞출 수도 있습니다. 아니면 한국인이라서 과녁에 맞출 확률이 무려 100%일 수도 있습니다. 확률에 대해서는 아직 정보가 주어지지 않았기에, 잘 모릅니다가 정답입니다.
문제에서 볼 수 있듯이 경우의 수는, 말 그대로 결과로서 나올 수 있는 경우의 모든 가짓수입니다. 과녁에 맞추거나, 과녁을 빗나가거나. 물론 문제가 세분화되서 과녁에도 영역을 나눌 수 있습니다. 그럼 경우의 수가 늘어나는 것이죠.
이세돌이 알파고랑 바둑을 두었을 때 가능한 경우의 수는 딱 2가지 입니다. 승리하거나 패배하거나. 그렇다고 해서 승률이 반드시 50%라는 말이 아니라는 것을 쉽게 알 수 있겠죠?
물론 아주 특수한 경우 경우의 수와 확률이 '겹치는' 예외적인 조건이 발생하기도 합니다. 경우의 수가 2가지이고, 각각의 확률이 50%인 상황도 있잖아요? 예컨데 두 사람의 바둑 실력이 서로 '대등해서' 승률이 서로 각각 50%인 특수한 경우를 상상해볼 수 있습니다.
여기서 '대등한' 이라는 말에 주목했습니다. 항아리에 빨간 카드 2장, 파란 카드 2장, 검은 카드 2장 총 6장이 들어있다고 생각해봅시다. 경우의 수는 3가지, 빨간거 파란거 검은거가 뽑히는 경우입니다. 확률은? 100/3 = 33.3%로 확률도 서로 같습니다. 만약 검은 카드가 2장이 아니라 1장인 순간 경우의 수는 유지되지만, 확률은 어그러지기에 다시 계산해야 합니다.
일반적으로 확률과 경우의 수는 서로 연관되지 않습니다. 그런데 위처럼 특수하게, 서로 대등한 양을 가진다거나 대등한 실력을 가지는 경우에는 경우의 수에서 언급되는 숫자가 확률 계산에 동일하게 쓰이기도 합니다. 쉬운 문제들은 보통 이런 특수한 경우를 많이 가정하기에, 자칫 잘못하면 오개념이 잡히기 쉽습니다. 오개념이 잡혔으면? 조금만 꼬아낸 어려운 문제는 바로 틀리는 것이죠.
수학과 물리는 특히 오개념을 조심해야 합니다. 읽어주셔서 감사합니다!
https://orbi.kr/00022703777 - 역설계란 무엇인가
https://orbi.kr/00023664569 - 역설계 수학) 왜 우리는 삼각함수를 배울까
-수학 오개념 잡기 - 경우의 수와 확률
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
워낙 물로켓이라 시험장에서 전체마킹이랑 독서3지문까지 25분 남아도 전혀 안쫄렸음....
-
쉽다는 의견이 있던데요 어떠신가요???
-
야짤공유함 ㅃㄹ 2
정사면체자짜개깔끔하게그려짐
-
오늘 하루도 보이진 않지만 앞으로 나아가고 있습니다. 항상 목표를 생각하며 흔들리지...
-
오노추 0
-
오토코노코를 보면 게이인가 아닌가 에 대해서 100분 토론햇엇음
-
EBS 참가자 모집 - (초중고) 공부에 고민이 있으신가요? 윤혜정, 정승제 쌤이 찾아갑니다 0
국어 1타 윤혜정, 수학 1타 정승제 쌤이 여러분의 집으로 직접 찾아갑니다! 전국의...
-
덕코 뿌려요 8
예
-
현역 이과 미적분 수학 내신 3 모고 3입니다 수시교과 위주로 준비중입니다 희망...
-
바로 감사합니다 하게됨,,
-
기하 쎈 0
현재 26 수능 보려고 기하 쎈 이차곡선 하는데 자취방정식이랑 실생활 풀어야되나요?
-
무료 배포를 210+@문제 하게 생김
-
100% 답이 명확해지기 전까지 안넘기는게 습관되서 최근 사설문학같이 ㅈ더러운건...
-
여기서 국경이나 킬러파트 한문제 꼭 나올겁니다 아마 올해 이란도 그렇고 작수는...
-
풀때 시간안봄 6
안풀기때문
-
옳하 4
-
글쓰기 1
글싸기
-
슬슬 2
잘까
-
7모 끝나면 2
오르비가 활성화 될까.
-
다음에 봐요
-
나투뎃왜이래 0
-
국어 계획 5
문학을 개빨리 풓고 느긋하게 독서 음미하기
-
사줘
-
담임 ㅅㅂ 0
님들아 저 부산에서 고등학교 다니는데 모고볼때 원래자리 좋았는데 담임이 내줄...
-
난 심지어 한 지문 끝날 때마다 시간 보고 몇 시 몇 분인지 적어놓기까지 하는데...
-
국어 푸는 전략 수정 11
언매 -> 독서론 -> 과학기술을 제외한 독서 -> 문학 -> 과학기술로 수정
-
저녁 추천 좀 2
배 별로 안 고파서 가볍게 먹을 거로
-
번식 3
실패
-
으럇으럇 2
뱌고파
-
아래를 보면 그만큼의 저능아가 보임 세상이란 깔고 깔리는 아사리판이다
-
내가 그런 사람이 아니라는게 문제임..
-
아무이유없이 3
열심히 살아야겠다는 생각이 들었다. 다들 화이팅 꼭 성공하길 바래요
-
똥이 안멈춤 9
.
-
고양이는 이런거 모대..
-
16살에 가형물2화2 만점이라거나 16살에 21211 미적과탐으로 쟁취한 사람이나...
-
국어 볼때 시계 3
언매 지문형 다 풀고 > 4~5분 언매 첫페이지 끝내고 > 5~6분 언어 다풀고 >...
-
그게 나야 바 둠바 두비두밥~ ^^
-
6문제 다 품 4
정기 다 빨림 이제 아침먹을거임
-
얼버기 5
이곳은 새벽 6시라 팩트임
-
의외의 사실 7
오르비 뻘글러들의 평균백분위는 꽤나 높은편이다
-
국일만에서 시험칠때 시계 보지 말라는 말 어떻게 생각함? 24
대충 내용 요약하자면 1. 만약 예상보다 시간이 많이 흐른 경우, 나머지를 무리하게...
-
수학과외 보통 1
일주일에 몇시간씩하고 시급은 얼마받으세요? 고3이랑 n수 수업기준
-
뻘글거리가 없음 추천받음
-
오늘의 저녁 10
더블치즈돈까스 매콤김말이 냉모밀
-
언매 노베입니다 목표는 한의대입니다 언매 무조건 다 맞고 싶은데 공부량이 어느정도...
-
왜 0/0꼴이 아니라 무한대/무한대 에서도 로피탈을 쓸수잇지 9
모르는데 걍 씀
-
속도 가속도에서 나옴 ㅇㄱㄹㅇ
-
40명정도면 많은건지 질문할래
첫번째 댓글의 주인공이 되어보세요.