[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
게시글 주소: https://orbi.kr/00067936218
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
수능 시험에서
영원히 반복되는 문항 구조,
과목은 다르지만
공통적으로 평가되는
실전개념에 대해서
알아보겠습니다.
전체를 모두 살펴보는 것은
한 개의 칼럼 글에서는 힘들겠고요.
(좀 더 많은 구조 연구+실전개념은
2025 이동훈 기출문제집에 수록된
실전 개념 설명 파트를
참고하시면 됩니다.)
21학년도 6월 모평 가형18 (나형21)
수학1 ㄱ, ㄴ, ㄷ 문제에서 평가된
문항구조+실전개념이
수학2, 미적분에서도
동일한 맥락에서 평가되고 있음을
함께 살펴보겠습니다.
본론 들어가실께요 ~!
힐 위 고 ~!
이 문제를 모두 읽고,
두 곡선을 그리고 나서
아래의 생각들이 바로 들어야 합니다.
(1) 문제에서 주어진 두 곡선을 그리자.
(2) 두 곡선의 두 교점의 x좌표가 모두 -1, 1 사이에 있고,
이차함수 y=-2x^2+2 의 꼭짓점이 (0, 2) 이므로
두 곡선을 바둑판(격자) 위에 그려야 한다.
(이때, 격자를 그리지 않으면 ㄴ을 기하적으로
해석하기 어려울 수 있음)
(3) ㄱ. 사이값 정리
ㄴ. 기울기의 대소 비교 (& 기울기 1)
ㄷ. x1, x2 의 범위 & 2^x = -2x^2 = y 이용
위의 ㄱ, ㄴ, ㄷ에 대한 생각은
사실 그림을 그리지 않았어도
머릿속에 떠올라야 합니다.
어차피 평가하는 것이 정해져 있고,
이는 매우 전형적이기 때문이지요.
요컨대 ...
곡선 2개 -> 교점 -> 경계값(ㄱ), 기울기(ㄴ), 방정식연립(ㄷ)
이게 전광석화 같이
머리를 스치지 않으면
어찌 시험장에서 안정적인 만점을 받으리오 !
참고로
위의 설명은
2025 이동훈 기출문제집의
후반부에 수록된 실전개념에서
모두 다루고 있습니다.
그리고
위에서도 잠깐 언급하였지만 ...
ㄴ에서
y2-y1 < x2-x1
(필충)
(y2-y1) / (x2-x1) < 1
(필충)
두 점 (x1, y1), (x2, y2) 를 잇는 직선의 기울기 < 1(=직선의 기울기)
기울기가 1인 직선을 찾는다.
즉, 연결하면 기울기가 1이 되는 두 점을 찾는다.
는 격자를 그리지 않으면 잘 보이지 않습니다.
특히 3등급 상단~2등급 하단에서
좀 처럼 등급 안오르는 분들은 ...
점 찍어서 그래프 그리는 연습이
많이 부족한 경우가 많습니다.
이거 고치면
최소 3점에서 최대 6~8점까지
오르는 경우가 많으니 ...
그래프를 꼼꼼하게 그리는 연습을
좀 더 하셔야 하고요.
아래는 2025 이동훈 기출의 해설 입니다.
깔끔하죠 ?
ㄱ.
아래는
2025 이동훈 기출 수학1 평가원 편에
수록된 교점 처리에 대한
이론 설명입니다.
자 이제 사이값 정리가 적용된
미적분 문제를 하나 살펴보겠습니다.
10년 전 문제인데요 ...
이 주제에 대한 고전 이라고 봐야겠죠.
ㄱ, ㄴ, ㄷ의 문제 구조에 대해서도
두 개의 곡선 -> 교점(ㄱ)+방정식연립(ㄱ) -> 사이값 정리(ㄴ)
구조가 9년 사이에 바뀌었나요 ?
(순서 정도는 바뀔 수는 있어도 ...)
똑같죠 !
수능은 ...
그냥 never ending, same story 거든.
나 같은 (연습을 많이 한) 사람은
함수 준 것, 문제 구조 보면
딱 보이거든.
어떻게 풀어야 하는지가.
여러분도 이렇게 하셔야 하겠고요 ...
이런 구조에 대한 이해가 없이는
수학을 잘 할 수는 있어도
수능 시험에서 고득점/만점 받는 건 쉽지 않은 일이죠.
그리고 평가원 기출은
(교사경 기출 포함해서...)
반드시 31 년 전체를 풀어 주어야 합니다.
최근 몇 년 간 ...
이렇게 하시면 수능 날 곤란할 수도 있으니.
아래는 맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄴ에 대한 해설 입니다.
(수식을 이용한 해설 또한
2025 이동훈 기출에 수록되어 있습니다.)
수식 보다는
역시 기하적인 관점이
좀 더 출제 의도에 가깝다는
생각이 지금도 듭니다.
ㄴ.
아래는 2025 이동훈 기출 수학1에 수록된
볼록성+직선의 기울기에 대한
실전 개념입니다.
이 주제는 미적분에서
도함수/이계도함수의 관점에서
다시 다룹니다.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
보기 ㄴ에 대응되는 미적분 문제입니다.
차이점 이라면
볼록성+직선의 기울기 에
평균값 정리가 결합된 것 인데요.
이에 대해서는
2025 이동훈 기출 미적분에서
아주 자세하게 다룹니다.
아래는 위의 ㄷ에 대한 해설.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대한 해설입니다.
ㄷ.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대응되는,
이차함수의 대칭성을
이용해야 하는 문제 입니다.
대칭축에 대하여 두 점이 서로 대칭이다.
이 주제에 대한 문제는 워낙 많은데요.
그 중에서도 가장 이 주제가 잘 드러난 문제이고 ...
두 점을 서로 대칭이동시켜보는 연습이
얼마나 중요한지를 알 수 있습니다.
사실 좀 더 깊게 들어가면
곡선 위의 점의 이동 (평행, 대칭)까지
생각해주어야 하기도 합니다.
아래는 위의 문제에 대한 해설.
오늘 다룬 주제들은 ...
2025 수능에서 반드시 나옵니다.
라고 말한다면
굉장히 높은 확률로 맞을 것입니다.
이 주제들을 꼭 익혀두시고 ...
다른 주제들도 완전 정복 하시길 바랍니다.
다음 주에도 또 만나요 ~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
칼럼 주독자층을 대변할 심사위원은 나밖에 없다 이말이야
-
ㅇㅈ 다시 해주십쇼
-
오르비 다시 안녕 11
가끔 올게
-
절대음감 어렵넽 3
-
나만ㅠㅠ
-
정병호 정병훈 현강다니면 인강용 수업 촬영하고 카메라 끄면 현장용교재로 어둠의스킬...
-
그거 이후로 이런거 처음본다옹 기대기대
-
ㅇㅈ 19
어제 화장 처음 해보고 찍어봄ㅋㅋ
-
마지막 칼럼이 언제였는지도 기억이 안나네요 반성하겠습니다
-
지원 완료 10
-
뭔 본방이 요약본 보는거마냥 급하게 넘어가네....한 세달은 할줄알앗더만
-
뭐 인증? 6
난 너무 많이해서 하면욕먹어 ㅋㅋ
-
난 바이러스고
-
대치동 35년 내력이 쌓여 극소수 최상위권에게만 전도된다는 극강의 비술 국영수탐탐...
-
이런 학구적인 분위기 너무 좋은듯
-
짐정리하다 못봄
-
ㅇㅈ 못봤다 0
존잘 ㅇㅈ이라 살았다
-
메디컬 스카이 에피센츄 고트들도 심사위원에 있어야하지만 칼럼의 주된 독자층인...
-
산타는 돌고래 (1379700) 극 야 (1350264) ^!바리기...
-
누구 있나요?
-
20레벨까지 어떻게 올리지 20레벨까지 올려야 뉴스를 긁어올 수 있는데 고민중이네요
-
오랜만에 ㅇㅈ 10
.
-
질문글 10
저 올해 6모 몇등급 가능할까요??
-
선택권 드림
-
내가 ㅈㄴ 자세히 답을 해 주는데 대댓 안 달아서 내 답을 확인한 건지 안 한...
-
신 난이도 에바야
-
안녕하세요? 저는 17살 자퇴생 노베이스입니다. 올해 3모에서 5등급 51점이...
-
난 이걸로 정착한다....
-
수능 전에 7
믿거나말거나 이슈가 한창이었죠… 형님만 믿고 연계 선별은 잠시 밀어뒀는데… 언제...
-
내가 아직 성공 못한 실패인간이라 답해도 되나 싶어서 망설여짐
-
질문글 3
이틈을 타서 질문하고싶습니닷.. 제가 입시판에 진짜 진짜 노베라 핑프같겠지만 오르비...
-
덕코좀 0
덕코좀
-
1. 질문 자체가 너무 방대, 모호하거나 ex) 확통 5등급인데 6월까지 수학 공부...
-
고1때 왜 가입했더라 처음에 어케 알게 됐는지가 기억이 안남
-
아니 1277170 슨슈 뻘글만 싸면 어뜨캅니까..... 죄송했습니다.. 벌은...
-
그냥 무승부 하죠?
-
연카성고 의대 정시 일반전형 목표로 물1물2는 미친 짓인가요? 냉정하게 투표...
-
어지럽네
-
진짜 이거 뜯어말리고 싶다
-
호감이면 댓 달아드림 23
-
뉴비라서 울었어ㅠ
-
3모는 100점이고 3덮은 30번 반쯤 풀고 찍맞해서 96 나왔습니다. 현역이라서...
-
역시 도라에몽은 6
이 사진이 제일 귀여워
-
느린맘이라는 강민철 프사랑 그사람 따라하는 빠른맘이라는 강민철 프사가 메인에 같이...
-
너무멍청해졋네 31
놀고먹고자기만해서그런가바
-
궁금
-
ㄹㅈㄷ 고능아들이 다 심사위원으로 들어가 버렸으니 우리같은 범부 담요단들이 상품을...
-
힌트:가입 이전임(눈팅)
감사합니다 도움많이됏급니다

올해 원하시는 바 모두 이루시길 기원합니다 ! :)