GOAT 판별 ox 문제 해설
게시글 주소: https://orbi.kr/00067575435
https://orbi.kr/00067568363/GOAT%20%ED%8C%90%EB%B3%84%20ox%20%EB%AC%B8%EC%A0%9C
(GOAT 판별 ox 문제)
재미삼아 올린 글인데 이렇게 많은 분들이 보실 줄 몰랐습니다!
많은 분들이 해설을 원하셔서 간단하게 적겠습니다!
1. 미분가능한 함수 f(x)가 실수 전체의 집합에서 증가하면 f'(x)>0?
(X)
반례 : f(x)=x^3은 실수 전체의 집합에서 증가하지만 f'(0)=0입니다.
+
'미분가능한 함수 f(x)가 실수 전체의 집합에서 증가하면 f'(x)>=0이다' 는 참입니다.
1번 문제의 역인 '미분가능한 함수 f(x)가 f'(x)>0이면 실수 전체의 집합에서 증가한다.' 는 참입니다
2. 연속함수 f(x)가 x=a에서 극대이면, x=a에서 극소가 아니다?
(X)
반례 : f(x)=0은 x=0에서 극대이자 극소입니다.
+ 극값의 정의는
https://namu.wiki/w/%EA%B7%B9%EA%B0%92?rev=209#rfn-2
를 참고하면 될 것 같습니다.
3. 연속함수 f(x)가 x=a에서 미분가능하지 않으면, x=a에서의 접선이 존재하지 않는다?
(X)
반례 : f(x)=x^3의 역함수 g(x)에 대하여
g(x)는 x=0에서 미분계수가 존재하지 않아 미분가능하지 않으나, x=0을 접선으로 갖습니다.
+ 잘못된 반례
f(x)=lxl+x는 x=0에서 미분가능하지 않으나 y=0을 접선으로 갖는다?
f(x)=lxl+x의 x=0에서의 접선은 존재하지 않으므로 잘못된 반례입니다.
접선의 정의는
https://blog.naver.com/772tiger/222518633109
를 참고하면 될 것 같습니다.
4. 미분가능한 함수 f(x)에 대하여 f'(a)=0이고 x=a에서 극값을 갖지 않으면 (a, f(a))는 f(x)의 변곡점이다?
(X)
일단 변곡점이란?
함수 f(x)의 그래프가 오목 -> 볼록으로 또는 볼록 -> 오목으로 변하는 지점 입니다.
반례 : f(x)=x^2sin(1/x) (x가 0이 아닌 경우), f(0)=0
정말 유명한 특이한 (병리적) 함수이므로 자세한 설명은 생략하겠습니다.
함수 f(x)의 그래프입니다.
f'(0)=0이지만 x=0 근방에서 그래프가 계속해서 요동치고 있으므로
x=0에서 극대, 극소, 변곡점 모두 될 수 없습니다. (물론 엄밀히는 증명을 해야 하지만..)
+ 잘못된 반례
1. f(x)=x^3(x-2)가 x=0에서 극대, 극소 변곡점을 갖지 않는다?
x=0을 기준으로 볼록 -> 오목하게 변하므로 변곡점이 맞습니다.
2. 상수함수?
상수함수는 모든 점에서 극대 또는 극소이므로 전제에 맞지 않습니다.
3. 도함수가 존재하나 이계도함수가 존재하지 않는 함수
예를 들어
f(x)=x^2 (x>=0), -x^(x<0)인 경우
x=0에서 이계도함수가 존재하지 않아서 극대, 극소 변곡점 모두 아니다?
의외로 많은 분들이 착각하시는 것들 중 하나 입니다.
'변곡점이 존재한다'고 해서 그 점에서 이계도함수가 존재하는 것은 절대 아닙니다.
극대 극소랑 비슷하게 변곡점의 '정의'를 이용해서 살펴보면
x=0을 기준으로 오목 -> 볼록하게 변하므로 변곡점이 맞습니다.
그래서 이게 수능에 도움 됨?
결론부터 말씀드리자면 1번을 제외하고는 필요 없습니다.
사실 2번 같은 경우도 중요하긴 하나....최근 평가원에서 상수함수의 극대 극소를 물어보는 문항을
본 적이 없어서 그렇게 크게 중요한 부분은 아닌가 봅니다.
3번은 접선의 정확한 정의를 고등과정에서 알려주지 않기 때문에 크게 중요하지 않고,
4번은 말할 것도 없다고 봅니다...
그래서 이 ox 문제를 풀지 못했다? 수능 성적에 어떠한 영향도 주지 않으니 걱정하지 않으셔도 됩니다..!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서울대 의대 추합 생긴 이유 왜 그런지 알 것 같음 0
그냥 재학생일듯. 그 예전에 오X석 24학번 있잖슴. 오르비랑 인스타 후다닥 삭제한...
-
공간도형부터 난이도가 급상승하네 삼수선의 정리 쓸 때마다 좀 헷갈린다..
-
반수(0.5)를 4번 하면 0.5x4=2… 아 나 아직 수능 두번 봤구나 개꿀
-
다쳐가지고 과외 못할 거 같다했는데 쌤한테 미안타
-
독감 거의매년걸리는인간이라 독감 확진 하루이틀전에 삘이 화르르오는데 지금몸살끼도는게...
-
우우옯붕이 0
프로세카 30렙도 버거워서 우럿서 안하니까 실력이 퇴화한건가 아니면 늙은건가
-
퇴근까지 20분 0
머하지...
-
ㄷㄷㄷㄷㄷ
-
중대 전화추합 1
아 아무 생각없이 폰 보고 있었는데 갑자기 핸드폰 울려서 깜짝 놀라서 받았는데...
-
ㅇㅂㄱ 1
-
어느 쪽을 주전공으로 삼는게 유리한가요?
-
700이면 의대보다 등록금 높은 거 아닌가??
-
건대 가는 사람들은 다 건대 복전 보고 가는거 아닌가요? 건대 전전 vs 외대 ld...
-
성대 4차 1
주말에 나올까요?
-
그냥 ㅋㅋㅋㅋㅋㅋㅋ ㅋㅋㅋㅋㅋ
-
이젠 그런 짓 못해
-
ㅇㅂㄱ 0
-
기차지연된다 3
큰일났나?
-
보니까 eicc에서 영어통번역학과로 2025년도부터 학과명 변경 했다는데 이러면...
-
뜨듯한 2
용암 한 잔 하고 싶다
-
잘못된선택일까
-
킁 1
-
잘자 오르비
-
환상 갖지마삼
-
기차지나간당 7
부지런행
-
돈 벌기 힘들다
-
저 사실 금발임 3
근데 흑발로 염색햇음
-
너...너무해여....
-
특정한애가 박제해도 상관없어 이젠 나도 몰라
-
흠
-
무브링
-
서울대 수리과학부 연세대 전기전자공학부 고려대 사이버국방학과 한양대 미래자동차공...
-
이시간에 배달비까지 해서 13000원임 거기다 콜라 1.25l로 줌 동네 치킨집인데...
-
사랑과평화우정
-
어피니티
-
어제 일당 ㅇㅈ 3
외화 유출 ㅈㅅ
-
진짜로
-
좋은꿈꿔
-
특정한번 당하니까 바로 그냥 아이고아이고아이고아이고 아이고맨이 되어버리고 이제는 망해버렸어
-
꼬리 흔드는거 하아...
-
내가 이김뇨 ㅋ 2
미지
-
ㅠ
-
의예과 제외
-
다음 프사 4
루시다음 닉 ㅁㄹ.
-
그랬기 때문에 항상 공허한 느낌이 드는 것일까요,, 어디로 가야 할지도 모르겠어요,,
-
잘자요 6
내일은 좋은 하루가 되었으면
-
17개월구라아님
4번은 많이 유명해서