[이동훈t] 기출로 기출 풀기 (241128) 미적분
게시글 주소: https://orbi.kr/00067438040
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오랫동안 안 되면 불안해짐....내가 뭐 잘못했나 수백번도 더 생각함
-
시발점은 실전개념도 어느정도 다 들어가있는거같더라고요 고민됩니다이
-
봄 아니였음?..
-
좀 친일이었을 가능성이 있나..? 외증조할아버지가 교토대인지 도쿄대인지 나오셨다는데...
-
(가) 인강 촬영 방식은 크게 두 가지로 나눌 수 있는데, 스튜디오 촬영과 현강...
-
목 빠지겠다
-
나도 좀 지분잇다 ㅇㅈ?
-
혹시 3모 국어 4
33번 맞히신 분 잇음?대체 어케 맞힘
-
저격합니다 0
컨관님덕코주세요
-
기하 2
미적 이거 아닌 것 같아요. 내일부터 기하해야지
-
커리 메모 4
-
사람들이 댓글을 잘 안 달아주네요...
-
에휴이 걍 올라가야지
-
ㅋㅋㅋㅋㅋㅋ
-
나 예전에 오르비에 아재개그 글 한창 올린 적 있는데 2
그때 ㅈ도 재미없는 오뿌이들 배꼽 주의 이거 따라한다고 욕 먹음
-
이제 좀 안 간지럽네
-
저격합니다 0
미안합니다 정 반 합 둘다 찐따같으면 개추 ptsd
-
6모신청 1
러셀에서 할려하는데 질문1.온라인신청이후 그다음주에 학원방문이있는데 학원방문까지...
-
자기장풀때 전 그냥 - +로 만 표시하는데 인혁쌤은 사진 처럼 표시하네요 저렇게...
-
저격해요 5
저... 격해요
-
본인 국어 1
답 1번인건 개 잘 맞춤답 5번인건 개 못 맞춤
-
1월 이후 안들어가봐서 모름
-
htps://orbi.kr/search?q=1325791&type=imin
-
메타가 흐르다보면 가끔 심상치 않은게 나오는
-
닉변도 전생임? 1
본인 전생 몇개임
-
저격?? 2
안당해봄 ㅋ
-
놀라운 사실 3
관리자님이 서버 고친듯 이제 안튕기네요 너무 자연스러워서 몰랐음
-
- 상용로그(수1)- 동경의 위치관계(수1) - 가우스 기호 - 이항분포 이것들 말고 또 있나요?
-
저격 2
그래도 깝친 거에 비해서는 많이 안 당함 휴
-
고1이고 3모국어 3등급나왔는데 저책 괜찮나요 국어 학원다닌거없고 문제집도 따로안풀었어요
-
엇 쌍사죽었다 4
알고있엏음?
-
3모 너뮤 어려워요
-
암튼그럼
-
워드마스터 듣는거 없이 단어만 외워가지고 워마에 있는 단어들 다 들은 다음에...
-
저격먹은거 진짜 4
-
심리상담+키타이쿠요와 대화
-
저격 먹은거 억울해 13
ㅁㄹ 걍 억울해 공감해저격만 5번 먹엇어 (아마 진짜임)
-
메인 2번 가봤는데 첫번째가 '오르비에 없어져아 할 메타' 두번째가 노무드립...
-
예체능이라 수학 처음해봄 4등급 목표인데 일단 50일수학 정승제 ebs 들을거임...
-
고민이야 14
세 끼 다 먹었는데 배고파 가짜 배고픔 같은데 과자라도 먹을까요
-
온 가족이 각자 방에 있다가 거실로 나왔는데 이거 어캄?
-
ㄹㅇ
-
행복하다 3
이겁니다
-
남자 여자 각각 특징이 뭐가 있을까 제가 보기로는 남자는 확실히 이목구비 찐한...
-
유전아 덤벼라 0
살살 들어 와라
-
토익 준비때문에 ets단어장으로 외우고있음 단어장이랑 ets단기공략650+같이...
-
수능: 새로 얻어가는건 적음(상대적으로), 문제푸는 방법을 익힘 대학: 새로...
-
퇴물 다됐어 6
평생 180따리로 살거같아..
-
얼마면 충분할까요? 사문 생윤 하루에 한 과목씩 번갈아가며 하는 중인데 1시간...
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545