[이동훈t] 기출 1회독 이후가 더 중요 (+실전개념목차PDF)
게시글 주소: https://orbi.kr/00067233031
2025_이동훈기출_실전개념목차.pdf
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
벌써 2월 중반이 넘어가네요 ...
세월 참 ... 빠르고 ...
규칙적인 생활을 하고 계실 것으로 믿습니다 !
2025 수능 대비를 빠르게 시작하신 분들은
이미 평가원 기출을 거의 다 풀어가실 것 같은데요 ...
평가원 기출은
다음과 같이 3회독 할 것을 권합니다.
각 단계에서 달성해야 할 목표까지 써보면
1회독 : (어떻게 든) 답은 모두 맞히기
2회독 : 실전 개념을 정리한 후, 문제를 정확히 이해하기
3회독 : 문제 사이의 관계까지 이해하기,
다양한 풀이를 찾아보고, 그 중에서 최선의 풀이를 결정하기
2025 이동훈 기출이 기출은
3회독에 최적화된 책인데요.
2025 이동훈 기출 평가원 편 (또는 평+교 편)에는
실전 개념이 포함되어 있습니다.
(그래서 별도의 수능 개념서 필요하지 않으시고요.)
실전 개념 목차는
이 글에 PDF 파일로 첨부하였으니
다운 받으시고요.
(일전에 올려드린 파일과 동일합니다.)
또한 평가원 기출의 경우에는
최대한 많은 풀이를 수록하기 위하여 노력했습니다.
( [풀이1] 또는 시험장 풀이 표시가 된 풀이만 읽으시면
그 어떤 기출문제집 보다 빠르게 주요 풀이 완독 가능 하시고요.)
평가원 기출 1회독 이후에
실전 개념으로 각 문제가 가지고 있는
이론적인 배경까지 정리한다면
안정적인 1등급 / 만점을
매우 높은 확률로 달성할 것입니다.
이건 뭐 ...
내가 최근 5년 간 가르친 학생들로
이미 임상 실험을 마쳤고.
특히 낮은 2등급 분들은 ...
평가원 기출 1회독 + 실전 개념 정리
딱 요걸
제대로 하시면
안정적으로 1등급에 안착하시게 됩니다.
(낮은 2등급은 N제, 실모, ... 등등을
더 푸는 것보다 ...
평가원 기출 1회독 제대로 한 번 더 하시는게
성적 향상될 확률이 높아집니다.
이건 내가 선생으로 가르쳐 봐서
더 잘 아는 거고 ...)
이때,
제대로
=
평가원 기출 전개년
+ 맑은 정신으로 하루에 최소 3~4시간 이상
+ 실전 개념으로 이론 까지 정리
(미적분 선택 기준으로 3 개월 내외 생각하시고 ...
그런데 난 1달 만에 다 하겠다 ...
이러면 날림 공사 됩니다.
그럼 나중에 또 해야 하는데 ...
그럼 또 귀찮고 ... 하기 싫고 ...
이렇게 되죠.)
특히 1등급 이상 원하시는 분들의 경우 ...
평가원 기출은
최근 기출, 고대 기출 모두 풀어야 합니다.
출제자 분들이
이 둘의 밸런스를 맞춰서 출제 하니까요.
자 이제 ...
각 과목의 실전 개념을
기출 문제와 함께 확인해보실까요 ?
수학1 - 등호가 2개 들어간 식 (가비의 리)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전 개념의 구성은 다음과 같습니다.
등호가 2개 들어간 등식을 처리하는 일반적인 설명,
간단한 예제,
심층 주제인 가비의 리
이 주제는 더 이상 정리할 것이 없을 정도로
자세하고, 체계적으로 설명해두었습니다.
수학2 - 삼차함수의 그래프 (변곡접선)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
수학2에서는 변곡점, 오목볼록을 배우지 않지만
기출문제를 보면 이에 대한 이해가 필요한 경우가 있으므로
수학2에서도 변곡점, 오목볼록, 변곡접선에 대한
설명을 해두었습니다.
위의 예제는 산술적인 풀이, 기하적인 풀이가 모두 중요하므로
이 두 방법을 모두 소개하였습니다.
특히 산술적인 풀이는 삼차방정식
(x-alpha)*(ax^2+bx+c)=0
에 대한 일반적인 해법을 적용해야 하고 ...
이 계산법은 수능에서 종종 출제되고 있으므로
반드시 익혀 두어야 합니다.
미적분 - 초월함수의 미분성 (합성함수)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전개념 구성을 보면.
합성함수 f(g(x)) 의 미분가능성에 대한 일반적인 설명,
간단한 예,
좀 더 복잡한 예
(산술적인 풀이와 기하적인 해석)
꼭 정리해야 하는 점들을
가능한 모두 다루었습니다.
확통 - 포함과 배제의 원리
이 주제에 해당하는 기출 입니다. (& 풀이)
이 주제에 해당하는 실전 이론 입니다.
포함과 배제의 원리는
경우의 수와 확률에서 종종 출제되는 개념 입니다.
교과서에서는 직접적으로 설명되어 있지 않으므로
실전 개념을 통해서 추가적으로 학습해야 합니다.
기하 - 벡터의 덧셈과 뺄셈 + 내분외분
이 주제에 해당하는 기출 입니다. (&풀이)
이 주제에 해당하는 실전 이론 입니다.
시점이 일치하지 않는 두 벡터의 합 (내분외분)을
어떻게 처리해야 할 지에 대한 설명 입니다.
이 설명은 교과서에서 다루지 않지만
기출 문제를 풀 때 유용한 경우가 많으므로
꼭 익혀두어야 할 것입니다.
그 외에도 5과목 모두 반드시 익혀야 하는
실전 개념을 모두 수록하기 위하여
노력하였습니다 !
2025 이동훈 기출과 함께
올해 승리하시길 바랍니다 ~~!!!
ㅎㅍ ~
2025 이동훈 기출 사용법 (+실물사진)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 2025 이동훈 기출 실전 개념 목차
고1 평가원 기출문제집
[이동훈t] 2025 이동훈 기출 고1 수학 PDF 무료 배포
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이정도 표본유입으로도 이렇게 정상화시켰는데 분위기,기본인원수보면 유입량 최소n배증간데과연,
-
난 오르비하려고 수면 시간 줄이긴 함
-
수능 컨설팅 받을려면 어디 학원가서 받는게 제일 좋을까? 1
나름 유명한 큰데 기준으로 말하는거 ㅇㅇ 자기 자신의 위치, 앞으로의 전망, 발전...
-
필수본 교재없이 0
인강만 들으면 안되나? 완자 이미 있는데 사야하나?
-
자유대한~~~ 0
그냥 갑자기 써봄...
-
U치환 2
행복 유치환 사랑하는 것은 사랑을 받느니보다 행복하나니라 오늘도 나는 에메랄드 빛...
-
여캐일러 투척 19
이거나 올려야지
-
물1 왜 버림? 4
안 씻기만 해도 되는 과목인데
-
사탐런 생윤사문하는데 생윤 개념강의 들을 땐 다 잘 이해하고 잘 외웠는데 기출가니깐...
-
예비고3이고 겨울방학 때 지구 공부를 다 끝내야하나요 작년지구 내신다1맞긴했는데...
-
와 진짜 맛있다 5
이 가격에 이 정도 맛은 얘 말고는 찾기 힘든 듯
-
고려대 교과우수 2
교과 성적 잘못 입력하고 진학사 들어오는 사람 많을까요??
-
분노는 나의 힘 2
으으으으으으으
-
무등비 삼도극 빠지니까 오히려 더 어려워진거 같은
-
사탐에서 경제느낌인가 둘다 냄새는 뭔가 비슷할거같애
-
1로 맞춰놓고 원서 넣으면 ㅈ간지나잖아ㅋ
-
수학 허수 특징 3
241119 틀림
-
거의 다 들어왔다고 봐도 되나
-
첫 풀이 2000덕 드리겠습니다! (+자작 아닙니당)
-
고민이양
-
물리 vs 생명 1
작년에 물리 역학 개념하다가 생명으로 틀었는데 이번 수능 생명 역대급으로 개처망해서...
-
칸수가 표본보다 중요합니다.. 속여서 안 죄송 ㅅㄱ
-
대학교 3학년인데 메디컬 수시 넣어본다 vs 만다 22
원전공: 문돌이 해야하는 노력: 영어 1등급 받아야 함, 국어 3뜨면 안됨, 사탐...
-
듀얼모니터 만들어서 티비로 인강 들으려고 했는데 그냥 듀얼모니터로 창 두 개 켜놓고...
-
점공 14명밖에안들어왔어요 55명지원인데 ;; 이거 허수들 많다고 생각해도 되는걸까요?
-
원래 대학 잘 가면 과외 할 때 쓰려한 한 것들인데 불의의 사고가 있었.. 그냥 다...
-
서강 경제 0
서강 경제 폭인가요?? ㅠㅠ 점공 폭 빵
-
평가원 수학 현장 100을 찍어보고 싶어졌다.
-
고대 점공 2
25명뽑는과에서 점공 31명중 19등인데.. 붙을 수 있을까요.. 컨설턴트가...
-
수악커하 6
사설 다 끌어와도 93점인게 레전드네 어떻게 96을 단한번도 못 맞아봤지 아..잘좀할걸
-
수시충 내신 최저 등급 11
‘중국어독해와작문 5등급‘
-
평가원 커로 6
국어 96 수학 98 영어 3 생명 75 지구 89 이중 3개가 수능임..
-
교욱청커로 7
국어 3등급 수학 4등급 화1 7등급 생1 5등급
-
1/8 : 파리 브이로그 마지막편 1/9 : 티원 레드불 보이스
-
액션 영화 좋아하는데 파워레인저같은 마블 말구
-
자그마치 미적분 6
-
내 18년을 그리 믿고 살았는데 내 믿음에 부응하지 못하다니
-
프로스펙트 이론 vs. 프레이밍 이론+사회적 비교 이론 뭘로 할까
-
다음주에 홈에서 하는 오사수나 경기만 이기면 구단 역대 최대연승기록 경신인데......
-
할 짓 없어서 뻘글 싸지르는 중이니까 이거라도 보고가셈ㅋㅋ 적당히 잘 넣은 것 같나요??
-
국어 백분위 90 수학 백분위 91 영어 4등급 물리 4등급 백분위 68 지구...
-
밥 한번 먹기도 힘드네 에휴....
-
ㅈㄴ 두@근대네
-
ㅇㅇ?
-
이럼 잠 안 오는데..
잘쓸께요 흐흐哈哈?哈哈?