[이동훈t] 기출 1회독 이후가 더 중요 (+실전개념목차PDF)
게시글 주소: https://orbi.kr/00067233031
2025_이동훈기출_실전개념목차.pdf
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
벌써 2월 중반이 넘어가네요 ...
세월 참 ... 빠르고 ...
규칙적인 생활을 하고 계실 것으로 믿습니다 !
2025 수능 대비를 빠르게 시작하신 분들은
이미 평가원 기출을 거의 다 풀어가실 것 같은데요 ...
평가원 기출은
다음과 같이 3회독 할 것을 권합니다.
각 단계에서 달성해야 할 목표까지 써보면
1회독 : (어떻게 든) 답은 모두 맞히기
2회독 : 실전 개념을 정리한 후, 문제를 정확히 이해하기
3회독 : 문제 사이의 관계까지 이해하기,
다양한 풀이를 찾아보고, 그 중에서 최선의 풀이를 결정하기
2025 이동훈 기출이 기출은
3회독에 최적화된 책인데요.
2025 이동훈 기출 평가원 편 (또는 평+교 편)에는
실전 개념이 포함되어 있습니다.
(그래서 별도의 수능 개념서 필요하지 않으시고요.)
실전 개념 목차는
이 글에 PDF 파일로 첨부하였으니
다운 받으시고요.
(일전에 올려드린 파일과 동일합니다.)
또한 평가원 기출의 경우에는
최대한 많은 풀이를 수록하기 위하여 노력했습니다.
( [풀이1] 또는 시험장 풀이 표시가 된 풀이만 읽으시면
그 어떤 기출문제집 보다 빠르게 주요 풀이 완독 가능 하시고요.)
평가원 기출 1회독 이후에
실전 개념으로 각 문제가 가지고 있는
이론적인 배경까지 정리한다면
안정적인 1등급 / 만점을
매우 높은 확률로 달성할 것입니다.
이건 뭐 ...
내가 최근 5년 간 가르친 학생들로
이미 임상 실험을 마쳤고.
특히 낮은 2등급 분들은 ...
평가원 기출 1회독 + 실전 개념 정리
딱 요걸
제대로 하시면
안정적으로 1등급에 안착하시게 됩니다.
(낮은 2등급은 N제, 실모, ... 등등을
더 푸는 것보다 ...
평가원 기출 1회독 제대로 한 번 더 하시는게
성적 향상될 확률이 높아집니다.
이건 내가 선생으로 가르쳐 봐서
더 잘 아는 거고 ...)
이때,
제대로
=
평가원 기출 전개년
+ 맑은 정신으로 하루에 최소 3~4시간 이상
+ 실전 개념으로 이론 까지 정리
(미적분 선택 기준으로 3 개월 내외 생각하시고 ...
그런데 난 1달 만에 다 하겠다 ...
이러면 날림 공사 됩니다.
그럼 나중에 또 해야 하는데 ...
그럼 또 귀찮고 ... 하기 싫고 ...
이렇게 되죠.)
특히 1등급 이상 원하시는 분들의 경우 ...
평가원 기출은
최근 기출, 고대 기출 모두 풀어야 합니다.
출제자 분들이
이 둘의 밸런스를 맞춰서 출제 하니까요.
자 이제 ...
각 과목의 실전 개념을
기출 문제와 함께 확인해보실까요 ?
수학1 - 등호가 2개 들어간 식 (가비의 리)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전 개념의 구성은 다음과 같습니다.
등호가 2개 들어간 등식을 처리하는 일반적인 설명,
간단한 예제,
심층 주제인 가비의 리
이 주제는 더 이상 정리할 것이 없을 정도로
자세하고, 체계적으로 설명해두었습니다.
수학2 - 삼차함수의 그래프 (변곡접선)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
수학2에서는 변곡점, 오목볼록을 배우지 않지만
기출문제를 보면 이에 대한 이해가 필요한 경우가 있으므로
수학2에서도 변곡점, 오목볼록, 변곡접선에 대한
설명을 해두었습니다.
위의 예제는 산술적인 풀이, 기하적인 풀이가 모두 중요하므로
이 두 방법을 모두 소개하였습니다.
특히 산술적인 풀이는 삼차방정식
(x-alpha)*(ax^2+bx+c)=0
에 대한 일반적인 해법을 적용해야 하고 ...
이 계산법은 수능에서 종종 출제되고 있으므로
반드시 익혀 두어야 합니다.
미적분 - 초월함수의 미분성 (합성함수)
이 주제에 해당하는 기출 입니다.
이 주제에 해당하는 실전 이론 입니다.
이 주제의 실전개념 구성을 보면.
합성함수 f(g(x)) 의 미분가능성에 대한 일반적인 설명,
간단한 예,
좀 더 복잡한 예
(산술적인 풀이와 기하적인 해석)
꼭 정리해야 하는 점들을
가능한 모두 다루었습니다.
확통 - 포함과 배제의 원리
이 주제에 해당하는 기출 입니다. (& 풀이)
이 주제에 해당하는 실전 이론 입니다.
포함과 배제의 원리는
경우의 수와 확률에서 종종 출제되는 개념 입니다.
교과서에서는 직접적으로 설명되어 있지 않으므로
실전 개념을 통해서 추가적으로 학습해야 합니다.
기하 - 벡터의 덧셈과 뺄셈 + 내분외분
이 주제에 해당하는 기출 입니다. (&풀이)
이 주제에 해당하는 실전 이론 입니다.
시점이 일치하지 않는 두 벡터의 합 (내분외분)을
어떻게 처리해야 할 지에 대한 설명 입니다.
이 설명은 교과서에서 다루지 않지만
기출 문제를 풀 때 유용한 경우가 많으므로
꼭 익혀두어야 할 것입니다.
그 외에도 5과목 모두 반드시 익혀야 하는
실전 개념을 모두 수록하기 위하여
노력하였습니다 !
2025 이동훈 기출과 함께
올해 승리하시길 바랍니다 ~~!!!
ㅎㅍ ~
2025 이동훈 기출 사용법 (+실물사진)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 2025 이동훈 기출 실전 개념 목차
고1 평가원 기출문제집
[이동훈t] 2025 이동훈 기출 고1 수학 PDF 무료 배포
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
본인은 수학관데 수학 못해서 엉엉 우렀어
-
김승리 현강ㅠㅠ 1
대치 지금 걸면 아수라때도 못들어가나요? 앱키때 많이 빠진다고 들었는데ㅠ
-
닭강정 마렵네 8
매콤짭짤한 양념 닭강정이 먹고싶은것이야 거기에 치킨무
-
좋은 현상입니다 다같이 살찌자구요
-
참아야해
-
열심히 달리기!
-
가형형님들 15
오르비에서 만나면 무서움 막 난 무시당할꺼가틈
-
또는 집착 심할거같다 하는 사람 있나요
-
메가스터디 4
메가스터디 지금 저만 강의 재생 안되나요...? 러셀 보강 영상으로도 안 틀어지는데,,,,
-
퀄리티가좋은건진잘모르겟는데 이상하리만큼뇌리에강하게박혀잇음
-
내 안의 ambition이 살아나는 느낌이 든다… 진짜 말도 안 되게 똑똑하고 대단하신 분인듯
-
아 워너 데싀 아 워너 런잇 데싀
-
조금 현타오는거 4
칼럼 좋아요수 × 2 < 처음 쓴 정치글 좋아요수
-
이거랑 해서 걍 기하 잡기술들 함 모아서 칼럼 써볼까함 사실상 xyo님 칼럼 짜집기+응용임
-
제육 볶아온나 4
배고팡
-
ㅠ
-
오해원 레어를 갖고 있었네 언제부터지...
-
사탐런 관련 궁금한데 생윤-> 사문 고정 상태에서 나머지 하나 고민입니다. 사1...
-
1시간째못깨서울엇어...
-
철퇴로 정수리를 내리쳐주세요
-
수학 N축 적용 1
N축 그냥 오르비 어떤분께 배워서 잘 모르는데 이럴때 적용하는거 맞나요..? 푸니까...
-
난 7시 큰일났구나ㅏ 난 망해써
-
주말에는 방에서 오만거 다할 수 있어서 좋네 유후
-
엔믹스 오혜원 아이브 윈터 에스파 안유진
-
옯붕이 독서실옴 1
우으 문 잠겨있어서 다시 집감
-
음 아주 마음에 들어
-
새기분 3
5월에 시작해도 안늦나요?
-
진짜들의시간이다
-
막 컴퓨터 얘기하고 전공 얘기하고 술 들어가니까 내가 그러더라 ㅅ발
-
캬캬
-
거실에 0
아빠가 자고있음 화장실가면 깨려나
-
잘 4
자요
-
낭만의 언기물지 4
참가부탁
-
안되는 것을 될수도 있는 것으로 착각해서 여기까지 왔는데 안되는 것을 깨달았지만...
-
다 덮인 앞머리 있는 상태로 나가는 걸 존ㄴㄴ나 싫어함
-
행복하지마요 2
행복하려면 사랑한 날 잊어야 하잖아 가시가 박힌듯 숨쉴때마다 눈물이 흘러와 사는게 사는것이 아니죠
-
눈물이 2
주르르
-
사1 과1 하시는 분들이 많이 보이시는데 사1 과1의 장점이 뭐라고 생각하시나요?...
잘쓸께요 흐흐哈哈?哈哈?