누가누가 잘찍나(수학 ver.)
게시글 주소: https://orbi.kr/00067151627
다음 중 존재할 수 없는 함수는?(3개)
특별한 조건이 없는 모든 함수는 실수 전체의 집합에서 실수 전체의 집합으로의 함수입니다.
5번에서 연속함수의 수열은 f1(x)=x, f2(x)=x^2, ...fn(x)=x^n처럼, 자연수의 집합과 일대일대응을 이루는 함수들의 집합을 말합니다. 이런 수열의 ’극한‘인 함수 f(x)는, 정의역 내의 모든 점 a에 대해
를 만족시키는 함수로 정의됩니다.
위의 예에서 보듯이, f(x)는 연속이지 않을 수 있습니다(등비수열의 극한에 따라 x<1에서 f(x)=0, f(1)=1).
요즘 오르비가 참 시끄럽네요... 나이 많으신 저렙노프사분들이 많이 유입되신 듯 하네요 ㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문제를 정확하게 풀면서 피지컬 늘리기 6월 모평 이후에 문제 양치기 하기 어떻게 생각함?
-
높은 대학에 가고싶다는 열망이 너무 커서 연애새포를 눌러버림
-
가끔 지피티가 지브리로 변환을 못 하겠다고 하는 경우가 있는데(feat. 도긩이) 0
그때 지피티한테 "그럼 이 사진을 지브리 느낌/스타일로 만들려면 어떤 프롬프트가...
-
N수땜에 메가패스 사려고 며칠 뛰려하는데 알바몬에서 신청하면 될까요? 많이...
-
뭐가 다른거임? 쎈 대수 미적1 사도 됨?
-
무쌩겼어 5
으악
-
카 섹스 야동 2
내가 환장하는 3가지 라고 하면 큰일나겠죠?
-
좋은 선택일까요? 재슈생이어서 시간은 많습니다.
-
진짜 존예노
-
판서 어떤가요 0
더 연습해야..
-
작수 미적 3틀 84점이었던 반수생입니다. 제가 그래도 공통은 나름 자신있는데,...
-
제가 6모때 21221 9모때 11211를 받고 작수에 미끄러져서 31222를...
-
가운 입고 방 들어갔는데 교수님 들어오신다고 할 수도 있음
-
도전VS포기 다른과고 어디에 출몰하는지 암
-
넹
-
ㅇㅈ 5
올해 첫 전국대회 동메달 따고 서울가는중
-
내일은 시험이에요 13
.. 밤 새야 해요
-
옯만추 하는 사람들은 12
얼마나 인싸인거임
-
이따 알바 가야지 아마 내일은 알바 안갈듯
-
빤쮸 샀는데 5
되게 만족스럽네
-
오랜만입니다 11
어제 너무 아파서 거의 하루 오르비에 못들어왔네요
-
4살차이자나 근데 슈냥이랑 1살 차이라고..?
-
오르비에서 딴글은 안쓰고 맨날 정치뉴스 꾸역꾸역 가져오면서 그와중에 자기딴엔...
-
관악입갤 4
-
옯만추 기회 9
여기로 오시면 ㄱㄴ
-
나경누나도 완전 2
직각어깨네
-
기출 셤지 돌려보면 높4정도 나오는데 어떤 방식으로 공부하는게 제일 좋을까요..?...
-
재수생 사탐런 0
연고대 공대노리는 재수생입니다.세지 지1 조합하다가 지구버리고 사탐런 하려는데...
-
욕 박아도 되고 이름 불러도 되고 ㄹㅇ 친구처럼 지냈으묜 좋겟음
-
하
-
설수의 5
1등은 그렇고 2등으로 입학해주마
-
다양한 수식어를 잘못 사용하게 되면 수식어가 추가 정보를 제공하는 문장요소...
-
진짜 인생 개꿀빨면서 지랄하네
-
잇올 빌보드 0
더럽게 안올라오네 15일 지났는데 뭐하는것들이지
-
ㄹㅇ 야무진데 월화수 학원일 수요일은 좀 일찍 끝남 수성구에서 그대로 밥 먹고 과외...
-
건양대 의대에 가고 싶은데 건양의처럼 백분위 의대고 미기 가산점이 없는 대학만...
-
전역 후 수능 준비하는 n수생 입니다 집 앞 러셀학원에서 6모 접수를 했는데 따로...
-
2028학년도 동국대 모집단위별 전공 관련 교과 영역 0
2028학년도 동국대 모집단위별 전공 관련 교.. : 네이버블로그
-
국어에서 숨은 그림 찾기 같은 문제는 어떻게 처리해야 할까요? 3
독서도 그렇고 문학도 그렇고, 가끔 진짜 눈썰미가 좋거나 기억력이 ㅈㄴ좋은 사람들만...
-
외모 check 7
역시못생겼군
-
[속보] 美 자동차·주요부품 25% 관세 정식 발효 0
[속보] 美 자동차·주요부품 25% 관세 정식 발효 당신의 제보가 뉴스로...
-
귀엽다
-
놀아줘요 2
-
계엄하고 며칠뒤에 약간 사놨는데 달달하네 좀 더 살껄 ㅜ
-
근데 오르비언이 아니라 오리엿음 랩틸리언같은거임 오리비언인거지 근데 동시에...
-
아오 원래 고1부터 교육과정 바뀌니까 과외할생각 없었는데 왜 고3n수생들은 아무도...
-
통수칠 준비중인 아재인데 통합 수능 준비 할라면 그냥 시중 통합 사회 통합 과학...
-
재수생 6모 2
4월 10일 까지 모교 가서 신청하면 되는 거죠? 일찍 가면 좋고 그런거 없겠죠?
1빠
1 가능.
2,3은 가능 여부 동일
나머지는... 잘 찍자 난 모르겠다

과연 동일할까요어라
2 가능 3 불가능인가요?
2 불가능 3 가능이 더 확률 높지 않을까요
전 이런 거 몰라요 ㅠㅠ
저도 2찍음뇨(그 2찍 아니다)
이게 무슨 함수인진 잘 모르는데
유리수는 1을 포함하고 있으니까
확실한건 유리수를 정의역 집합의 원소로 두면
끊기는 지점이 필연적으로 나올거같기도
찾아보니까 3번은 존재하네요. (토메함수)
근데 이런건 어디서 배우는 건가요
여기저기서... 요즘 올리는 건 대부분 위상수학 하면서 배우는 내용이에요
6은 유명한함수같은데 기억이안나네요
2학년 수학때 알려주신거 아닌가 ㅋㅋㅋㅋㅋ
특목고나오심?
자사고입니다!

기억났소바이어슈트라스
Weierstrass
1.바이어슈트라스함수
2,3. 디리클레함수? 기억이잘안나는데 머가잇긴했음
아 불연속이구나
미분불가로봄
그럼 1.의 예시도 병리적함수로 정의가능할듯
1번이 디리클레 함수고 6번이 바이어슈트라스 함수일 거예요
그렇네요
126이되는거같으니까 345인가?
3은안될꺼같고 45는모르것다,,
해설(답 2, 4, 5)
1, 3, 6: 각각 디리클레 함수, 토메 함수, 바이어슈트라스 함수에 해당합니다. 1, 6은 꽤 유명해서 들어보신 분도 있을듯...
2. 실수 전체의 집합에서 정의된 임의의 함수의 불연속점의 집합은 폐집합들의 countable한 합집합으로 이루어져야 합니다.(증명은 도저히 여기에 간단히 쓸 수가 없네요...). 이때, 무리수 전체의 집합에서 함수가 불연속이라면 무리수 전체의 집합이 열린구간을 포함하지 않는 폐집합의 countable한 합집합일 텐데, 유리수 하나가 포함된 폐집합들 각각을 이 합집합에 포함시키면 결국 실수 전체의 집합을 interior가 공집합인 폐집합들의 countable 합집합으로 나타내게 되고, 이는 실수 공간이 베르 공간임에 모순입니다.
4. invariance of domain에 따라 불가능합니다.(걍 찾아보시면 사실상 저걸 불가능하다고 하는 게 내용인 정리로, 증명 자체는 군 이론과 위상수학을 통해 가능합니다)
5. 이건 생각해 보니 어차피 써도 안읽으실듯... 2번이랑 비슷하게 결국 실수 공간이 베르 공간임을 써서 모순을 유도해내는 방식입니다. 정확히 말하자면, 연속함수의 수열의 극한인 함수의 연속점은 실수 전체의 집합에서 dense함을 유도할 수 있고, 따라서 그 집합의 여집합인 불연속점은 열린구간을 포함하지 못합니다.
이야 일단 245로 찍었는데 맞았네 ㅋㅋㅋㅋㅋ 재밌는 정보 고마워요!!
논리적으로 풀었는데 맞음 짜스