미래에서 온 수능 22번의 접근: 2023년 12월 고2 27번
게시글 주소: https://orbi.kr/00066748524
이전 글에서 '직접 논증에 쓰이지 않아, 대충 정리한 것'의 이해를 위한 일상적 표현이 엄밀하지 않은 것이 있었는데, 이를 두고 '틀린 내용이 많다'고 주장하는, 무슨 뜻으로 한 말인지 뻔히 알면서 태클거는 한심한 인성과, 한없이 작은 것(무한소)과 그냥 0을 구분하지도 못하는 무지성의 어그로가 있었다. 제대로 된 훈수는 환영이지만, 이와 같은댓글은 지양하자.
작년 고2 12월 27번이다.
대부분의 풀이가 이럴 것이다. 먼저 (가)를 정리하면 a_2=-10이고 (나)를 해석해보자.
인접한 두 항의 곱이 0이상이다. 그런데 a_n들을 n 작은 순서대로 나열하면 음수가 나오다 언젠가 양수로 바뀔 텐데, 그 사이에서 인접한 두 항은 부호가 다를 가능성이 생긴다. 따라서 a_m=0인 m이 완충지대로 존재하여, m좌우에서 곱이 음수가 될 위기를 막아 줄 것이다. 따라서 a_m-a_2=d(m-2)의 값이 10이므로, 자연수임을 감안하면 d가 10의 약수면 된다. 답은 1+2+5+10=18.
이제 작년 수능 22번을 접근만 해보자.
박스 조건이 아까 고2 문제랑 유사하다는 것을 알 수 있다. 아까는 모든 자연수 n의 a_n의 부호들에 대한 조건이라면, 지금은 f(정수)들의 부호에 대한 조건이고 부등호 양상도 같다. 그런데 그 정수들이 2 차이나게 인접한 것들에 대해 f의 곱이 항상 0이상이다. 즉, 인접한 홀수에 대해 두 f(홀)의 곱이 0이상이므로, 아까 그 완충지대 논리로 f(홀) 중에 0이 하나 존재해야 한다. 또한 짝수에 대해서도 f(짝)중에 0이 하나 존재해야 한다.
내 주관이지만, 위와 같이 풀이를 시작하는 것이, 고2 27번을 미래에서 보고 수능 22번을 접근한다면 당연하게 느껴진다. 즉, 고2 27번은 제시된 방법대로 풀면서, 동시에 수능 22번은 대부분의 풀이처럼 f(0)을 기준으로 세우는 등 다른 태도를 가지는 것은 합리적이지 않아 보인다. 물론, 이전 글에도 언급했듯이 박스 아래 답 결정 조건을 가지고 풀이를 시작하는 것 또한 문제가 있고, 이것들이 f(0) 기준 풀이가 사후적인 이유이다.
내 풀이는 링크를 달아놓겠다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오야스미 2트 1
네루!
-
나보다 멍청한 애 많음 ㅋㅋ
-
우리아빠도엄마도아니면서 존나이래라저래라냐 말싸가지가 좃같은건 니들이 친척집 올때마다...
-
새벽에 심심해서 갑자기 합격증 올리기 .. ㅎㅎ 목표가 중경외시+이화..였어서...
-
그때 활동하던 양반들 다 떠났구만..
-
ㅈㅅㅇㅂ 난 진짜 여르비 거기다 아이돌급 외모일줄은 꿈에도 상상 못함
-
심연이니까 취향선택좀 12
후타나리 vs 쉬메일
-
아빠안잔다. 5
나 ㄹㅇ 왜안잠? 시간 늦어지면서 아이큐 실시간으로 떨어지는중
-
도플러효과에서 헤맨 난 저능아
-
ㄹㅇ 황근출해병님과 전우애 실시하나요?
-
수능볼까요 11
말까요
-
콜라 히아시되면 0
김밥이랑 먹을까 라면이랑 먹을까 참고로 육개장 컵라면임
-
주위에 레즈는 꽤 있음 15
게이는 못 봄
-
원래 계획은 미적 단과수업 + 스스로 수분감 풀면서 병행 이었는데 이번에 시대인재...
-
사랑해요
-
LGBTQ+ 3
-
이걸로 구별 많이 했었는데
-
먼가 무능한 남자 1같음
-
일어난김에 2
아예 일어날까 배고프고 잠이 안와
-
그냥 눈팅만좀 해보고싶은데
-
반수할까 2
미치겠다 진짜
-
숭실대가 떴노ㅋㅋㅋㅋ 아...인생..
-
난 게이 존중해 5
님들도 그렇지?ㅎㅎ
-
한양대가 떠버렸노 ㅋㅋㅋㅋㅋㅋㅋ 고3 9모 57589였음
-
얼굴 오르비언처럼 생긴분 나올줄 알았는데 생각보다 예쁘셔서 놀랬던
-
서울 가고 싶다 4
클럽 가고 싶어
-
훌륭한 사업가가 되는법??
-
고려대 너무 조아
-
게이더로 판독 가능
-
하아아아악 고양이가 이김
-
카톡 어차피 안와서 넣어논거임 ㅋㅋㅋㅋㅋ
-
집에서 과제할때만 필요한거임? 아님 매일 챙겨야되나?... 노트북 들고 두시간 통학...
-
라이브는 강의비는 저렴하던데 교재나 컨텐츠 이런거 다하면 보통 얼마나오나여 개학하면...
-
문과로 0
바꿀건데 확통노베면 미적은 그대로하는게 나을까요 미적을 잘하진않지만 확통은 아예노베라
-
현실에선 국숭세 부경인아곽 이 라인이 몇프로인가요? 3
한 15프로 하려나
-
좀 과한가 삼성 정품 65W 트리오 충전기임
-
이정도면 아싸히키맞냐?
-
흐흐흐ㅡㅎ
-
나도 자야겠네 13
-
난 갔을때 그냥 상담 조금하고 약 처방 받았는데 검사같은건 원래 딱히 안하는거임?
-
기대된다
-
잠이 안 옴 9
진짜 어캄
-
아 자다가 깸 17
ㅈㄱㄴ
-
못버티겠다 15
자야지...
-
정혼 당함 3
2학년 1등해서 받은 교육감상 상장 엄마가 카톡 배사 했는데 우리동네 사는 어떤...
-
동물배틀 on 8
고려대 호랭이랑 한양대 사자랑 싸우면 누가이길거같음?
-
다 님들이 만드시는거에여?
-
솔직히 어린시절부터 내 이름 별로 안좋아했는데 모 고닉이랑 장난삼아 이름바꿔보니까 둘한테 다 좋아보임 12
그냥 이름바꾸고 싳다 진짜로
첫번째 댓글의 주인공이 되어보세요.